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Abstract Vertebrate host diversity has been postulated to
mediate prevalence of zoonotic, vector-borne diseases,
such that as diversity increases, transmission dampens. This
“dilution eVect” is thought to be caused by distribution of
infective bites to incompetent reservoir hosts. We quanti-
Wed avian species richness, avian seroprevalence for anti-
bodies to West Nile virus (WNV), and infection of WNV
in Culex mosquitoes, in the Chicago metropolitan area,

Illinois, USA, a region of historically high WNV activity.
Results indicated high overall avian seroprevalence and
variation in seroprevalence across host species; however,
there was no negative correlation between avian richness
and Culex infection rate or between richness and infection
status in individual birds. Bird species with high seropreva-
lence, especially northern cardinals and mourning doves,
may be important sentinels for WNV in Chicago, since they
were common and widespread among all study sites. Over-
all, our results suggest no net eVect of increasing species
richness to West Nile virus transmission in Chicago. Other
intrinsic and extrinsic factors, such as variation in mosquito
host preference, reservoir host competence, temperature,
and precipitation, may be more important than host diver-
sity for driving interannual variation in WNV transmission.
These results from a Wne-scale study call into question the
generality of a dilution eVect for WNV at coarser spatial
scales.

Keywords Dilution eVect · Spatial scale · 
Sentinel species · Reservoir host · Host competence

Introduction

Since its original introduction to the United States in 1999,
West Nile virus (WNV) has become the dominant mos-
quito-borne viral infection of humans in North America
(Lanciotti et al. 1999; McLean 2006). Transmission is
maintained through a cycle between bird reservoirs and
mosquito vectors, primarily in the genus Culex, with
humans, horses, and other mammals incidentally infected
(Hayes 1989; Komar et al. 2003). Infection with WNV has
been responsible for human and equine morbidity and mor-
tality (Bernard et al. 2001; Petersen and Roehrig 2001) and
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regional and local declines of bird populations (Naugle
et al. 2004; Rocke et al. 2005; LaDeau et al. 2007).

Increased diversity of vertebrate hosts has been hypothe-
sized to decrease disease transmission of zoonotic, vector-
borne pathogens through a so-called “dilution eVect,”
where cumulative addition of incompetent reservoir species
dampens prevalence of infection by reducing contact rates
between vectors and the more competent species of reser-
voir hosts (Ostfeld and Keesing 2000a). The hypothesis
assumes that vectors bite incompetent and competent hosts
nonselectively. The dilution eVect was originally proposed
for Lyme disease (Ostfeld and Keesing 2000b), but dilution
is a viable hypothesis for other vector-borne zoonotic dis-
ease systems as well (Holt et al. 2003; Peixoto and Abramson
2006), including WNV (Ezenwa et al. 2006; Swaddle
and Calos 2008). Indeed, prevalence of WNV infection in
mosquito and bird populations may be modulated by heter-
ogeneity in vector or reservoir competence and contact
rates between birds and mosquitoes (Woolhouse et al.
1997; Komar et al. 2003; Turrell et al. 2005; Kilpatrick
et al. 2006). Recent research has focused on the relationship
between host community structure (i.e., species richness
and relative abundance of individual species) and preva-
lence of WNV and other arboviruses (reviewed by Keesing
et al. 2006; Kilpatrick et al. 2006,), as well as eVects of
avian population age structure (Hamer et al. 2008).
These relationships remain unclear, however, because
under certain circumstances high host diversity apparently
provides a suite of competent hosts that allow for persis-
tence and intensiWcation of arbovirus transmission, even
given increased frequency of reservoir incompetent
hosts (Norman et al. 1999; Gilbert et al. 2001; Keesing
et al. 2006).

We investigated the relationship between bird commu-
nity structure and prevalence of WNV transmission in birds
and mosquitoes in Chicago, Illinois, a region of historically
high WNV transmission (Ruiz et al. 2004). By the end of
2006, 1,465 human cases of illness from WNV had been
reported in Illinois, with the majority of these occurring in
the Chicago metropolitan area (Illinois Department of Pub-
lic Health (2008)). Intensive simultaneous collection of bird
and mosquito data across two transmission seasons and
across a wide range of urban habitats at a Wne scale pro-
vides an ideal opportunity for addressing the following
research questions: (1) Is avian richness negatively corre-
lated with prevalence of infection in bird and mosquito
populations? (2) what bird species display the highest
WNV seroprevalence rates in the Chicago area? We
hypothesized that increasing species richness of avian hosts
decreases overall WNV prevalence. We therefore predicted
an inverse relationship between host richness and infection
rate in mosquitoes and between richness and infection
status in birds.

Materials and methods

Study area

We sampled mosquito and bird communities in the Chicago
metropolitan area, Cook County, Illinois, from May to October
in 2005 and 2006. In 2005, nine study sites were selected on
Chicago’s south side urban/suburban interface, an area with
known clusters of human WNV cases during the 2002 out-
break (Ruiz et al. 2004). Five of these sites were selected
based on their residential classiWcation (>35% using land cover
mapping, Illinois Department of Agriculture 2008). Residen-
tial sites were selected to represent a range of human popula-
tion densities with varying proximity to large tracts of natural
land (US Census Bureau 2000). Additionally, we selected four
semi-natural sites that included three cemeteries and a wildlife
refuge. In 2006, we used the same selection criteria to select
four additional residential sites, which encompassed a larger
proportion of the Chicago metropolitan area (Fig. 1).

Estimation of bird species richness and abundance

We established transects of avian point counts at each site.
Due to diVerences in size of sites, transects consisted of Wve
survey points in residential sites and eight survey points in
natural sites. Survey points were distributed evenly across

Fig. 1 Map of study area in the Chicago metropolitan region, Cook
County, Illinois. Sites 13, 15, 17, and 19 were sampled in 2006, but not
2005; all other sites were sampled in both 2005 and 2006
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sites, and points were located at least 0.5 km apart to pre-
vent double counting of birds, in accordance with Breeding
Bird Survey protocols (US Geological Survey, North
American Breeding Bird Survey). Survey points that were
found to be situated in inaccessible, noisy, or high traYc
areas were relocated as needed. Each study site was sur-
veyed once in June and once in July, to coincide with the
peak avian breeding season in the Chicago area (Kleen
et al. 2004). Five-minute unlimited radius point counts
were conducted at each survey point (Reynolds et al. 1980),
and distance to each observed bird was recorded. We con-
ducted all surveys between 0.5 h before sunrise and 4.0 h
after sunrise (0530–1000 a.m.) on days with no precipita-
tion and wind speeds less than 24 km/h.

Collection of bird and mosquito samples

Birds were captured using mist nets (ATX type, 6 or 12-m
length, 36-mm mesh, Avinet Inc.). Each site was sampled
six times during 2005 and Wve times during 2006; sites
were sampled every 3 weeks between May and August, and
every 5 weeks in September and October. All captured
birds were identiWed, aged, sexed, weighed, measured, and
marked with US Fish and Wildlife Service bands (US
Department of Interior Bird Banding Laboratory), as autho-
rized by Federal Bird Banding Permit no. 06507. We col-
lected blood samples by jugular or brachial venipuncture,
using a 25-gauge tuberculin syringe or a 28-gauge insulin
syringe. Blood samples did not exceed 0.2 ml or 10% of
total bird blood volume. Diluent (BA-1) was added to each
blood sample in a 2.0-ml microcentrifuge tube. The amount
of diluent added depended upon the volume of the blood
sample, such that all samples were later screened for anti-
bodies at a 1:20 dilution (Hamer et al. 2008). Samples were
kept cold and then centrifuged within 5 h of collection.
Supernatants were transferred to 2.0-ml cryovials; both
clots and supernatant were stored at ¡20 or ¡80°C.

Adult mosquitoes were collected from each of the study
sites every 2 weeks from May to October during both Weld
seasons. At each site visit in 2005, adult mosquitoes were
collected using four CO2-baited CDC light traps (two
within 2 m of ground level and two in the tree canopy), four
CDC gravid traps baited with rabbit pellet infusion (Lamp-
man and Novak 1996), and a battery-powered backpack
aspirator (Meyer et al. 1990). The same sampling technique
was used in 2006, except ground-level light traps were
eliminated, since signiWcantly more Culex mosquitoes
were captured in elevated traps in 2005. Female mosquitoes
were identiWed to species (Andreadis et al. 2005) and were
divided into pools of 25 or fewer individuals. Pools
were grouped by date, study site, and species, and were
placed in 2.0-ml microcentrifuge tubes in long-term storage
at ¡20 or ¡80°C until laboratory testing.

Laboratory testing of samples

We estimated avian seroprevalence, since transmission, the
passing of disease from one individual to another, is diY-
cult to directly measure in the Weld. Seroprevalence repre-
sents the percentage of a bird population with WNV
antibodies at a given time. Not all birds infected with WNV
produce an antibody response. Moreover, seroprevalence
may depend upon the duration of immunity (Bernasconi
et al. 2002; Zinkernagel and Hengartner 2006), persistence
or reactivation of infection in the host (Gylfe et al. 2000;
Staszewski et al. 2007), and the mortality rate of the
aVected species. These complications limit interpretation of
seroprevalence results; however, it is diYcult to gather
large samples of birds displaying active WNV infections
(Hamer et al. 2008). We used epitope blocking enzyme-
linked immunosorbent assay (ELISA) to detect WNV anti-
bodies in bird serum samples (Hamer et al. 2008). Two
positive serum controls and four negative serum controls
were used as references on each plate. Samples that were
positive upon Wrst screening were serially diluted up to
1:640 and retested to determine end point titers.

For mosquito virus testing, 1 ml of a 50:50 mixture of
phosphate-buVered saline (PBS) and 2£ lysis buVer
(Applied Biosystems, Foster City, CA) and three number
seven steel shot were added to each tube, and then mosqui-
toes were homogenized (Retsch MM 300 high-speed
mechanical homogenizer, 4 min at 20 cycles/s), followed
by centrifugation for 2 min at 13,000 rpm at 4°C. RNA was
extracted from mosquito pools using an ABI Prism 6100
Nucleic Acid Prep Station following the Tissue RNA Isola-
tion Protocol (Applied Biosystems; P/N 4330252); RNA
was eluted in a Wnal volume of 60 �l of elution solution.
These extracts were subjected to real-time, reverse tran-
scription-PCR (RT-PCR) to detect a region of the WNV
envelope gene (Lanciotti et al. 2000). The primer-probe set
consisted of forward primer 5�-TCAGCGATCTCTCCAC
CAAAG-3�, reverse primer 5�-CAGCACGTTTGTCATT
G-3�, and probe 6FAM-5�TGCCCGACCATGGG-3�MGB
NFQ (Lanciotti et al. 1999). Reactions were carried out using
an ABI Prism 9700HT sequence detector at the Research
Technology Support Facility at Michigan State University,
following the TaqMan One-Step RT-PCR Master Mix
Protocol (Applied Biosystems; P/N 04310299). Cycling
parameters consisted of 48°C for 30 min for RT, 95°C for
10 min, and 40 cycles of 95°C for 15 s and 60°C for 1 min.

Data analyses

We restricted analyses of avian richness and relative abun-
dance to species that were likely breeding in the region
(i.e., migrants or extremely rare species were not consid-
ered), nor did we consider waterfowl, gulls, herons, raptors,
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and shorebirds, due to their wide-ranging habits and ten-
dency for extensive daily movements in the region. Density
estimates for the remaining bird species were derived from
detection functions using the program Distance 5.0
(Thomas et al. 2005). Relative abundance of individual spe-
cies was calculated by dividing species density by total bird
density. To meet normality assumptions, all relative abun-
dance values were arcsine-transformed. For species rich-
ness, we calculated numbers of species per census point,
since the number of points varied among sites. Transforma-
tion of richness was unnecessary since the distribution of
richness values was approximately normally distributed.

Unequal sampling eVort among sites can lead to biased
richness estimates. Rarefaction methods address this
potential source of bias by using data from a larger sample
to estimate richness in sites receiving less sampling eVort
(SimberloV 1972). Spatial arrangement of survey points in
this study resulted in thorough sampling of each study
site, and we observed high detectabilities (>80%) during
these surveys. At sites with eight survey points, species
accumulation saturated within the Wrst Wve survey points.
DiVerences in survey eVort between residential and
semi-natural sites were therefore unlikely to bias richness
estimates; thus, rarefaction methods were not used for this
analysis.

Culex infection rates (IR) were calculated using maxi-
mum likelihood estimation with 95% conWdence intervals
and the Pooled Infection Rate version 3.0 add-in (BiggerstaV
2006) for Excel (Microsoft 2005). We focused on Culex
mosquitoes because they have been implicated as important
WNV vectors (Turrell et al. 2005), and they comprised
>70% of total mosquito captures.

We modeled the association between bird community
structure and Culex IR at the study site level, using a gen-
eral linear model with predictor variables, including avian
richness, year, seroprevalence (combined for all bird spe-
cies at the site), and combined relative abundance of bird
species with high seroprevalence (i.e., all species with sero-
prevalence >20% in either 2005 or 2006). This cutoV point
corresponded to twice the total avian seroprevalance for the
2 years of study. To identify factors aVecting whether indi-
vidual birds were seropositive, we developed an individual-
based logistic regression model with WNV antibody status
(1 = seropositive, 0 = seronegative) as the dependent vari-
able. Continuous predictor variables included avian rich-
ness and Culex IR at the site where the bird was captured.
We also coded categorical predictors, species identity and
year, as dummy variables to assess whether year of capture
or species identity aVected the probability of an individual
testing seropositive . Finally, we tested for spatial autocor-
relation among WNV seroprevalence values using the
weighted K-function option in the program point pattern
analysis (Chen et al. 2000).

Results

Seroprevalence of bird community and individual species

We collected 2,151 serum samples from a total of 60 spe-
cies. Due to repeat visits to study sites, 90 of these samples
came from recaptured birds. To avoid pseudoreplication,
we only considered the Wrst capture event for each bird in
the following analysis; thus, we present results based on
2,061 serum samples. Antibodies to WNV were detected in
16 of the 60 species, and seroprevalence for the entire study
area and for all age groups and species combined was
20.5% in 2005 and 3.5% in 2006. Seroprevalence of juve-
nile (hatching year) birds, which reXects new WNV infec-
tions during a particular season, decreased from 18.5% in
2005 to 2.4% in 2006. Of 2,030 birds that were aged, sero-
prevalence was nearly identical for juveniles (11.4%,
n = 948) and adults (after hatching year; 11.5%, n = 1,082).

Seroprevalence varied considerably across species
(Table 1). Mourning doves (Zenaida macroura), northern
cardinals (Cardinalis cardinalis), and house Wnches
(Carpodacus mexicanus) displayed seroprevalence values
greater than 10% in both years. Notably, northern cardinal
seroprevalence was 75.8% (n = 66) in 2005, decreasing to
20.4% (n = 49) in 2006. Though sample sizes were small
each year, mourning doves displayed consistently high
seroprevalence of 57.1% (n = 14) in 2005 and 58.3%
(n = 12) in 2006. House sparrows (Passer domesticus), the
most abundant and widespread species in the study area,
exhibited a drastic decline in seroprevalence from 23.5%
(n = 302) in 2005 to 0.0% (n = 349) in 2006. Our results
indicated a decrease in average numbers of positive mos-
quito pools and a non-signiWcant decrease of Culex IR from
12.32 in 2005 to 9.71 in 2006 (t = 0.91, df = 8, P = 0.39,
Table 2). Seroprevalence for a species was not related to
the relative abundance of that species (Spearman’s rank
correlation coeYcient, r = 0.01, P = 0.60).

Predictors of Culex infection rate and West Nile virus 
antibody status in birds

Culex IR was not signiWcantly correlated with year, avian
richness, relative abundance of bird species with high sero-
prevalence, nor to total seroprevalence (Table 3). Likewise,
antibody status of individual birds did not depend upon
avian richness or species identity (Table 4). Antibody status
was primarily a function of year eVects, as individual birds
were signiWcantly less likely to test seropositive in 2006
than in 2005 (odds ratio = 0.40, P < 0.01). Birds from sites
with higher Culex IR were also more likely to test antibody
positive (odds ratio = 582.16, P < 0.01, Table 4).

We compared the avian community between 2005 and
2006 to determine whether signiWcant changes in richness
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or community composition contributed to the strong year
eVects noted in the individual-based model. Though aver-
age bird species richness decreased from 21 species (range =
10–32, SD = 8.01) in 2005 to 18 species (range = 9–31,
SD = 7.32) in 2006, the change was not statistically

signiWcant (paired t-test, t = 2.08, df = 8, P = 0.07). Rela-
tive abundance of the high seroprevalence species group
was also similar between years (t = 0.98, df = 8, P = 0.36),
and there were no major changes in species abundance
rank. There was no evidence of spatial autocorrelation for

Table 1 West Nile Virus seroprevalence for wild bird species testing seropositive by enzyme-linked immunosorbent assay (ELISA) during Weld
sampling in the Chicago, IL, metropolitan area, 2005–2006

Boldface indicates species included in high seroprevalence (>20%) calculation used for general linear model analysis of Culex infection rate

Species 2005 2006 Total

N No. 
pos

Percentage 
pos

N No. 
pos

Percentage 
pos

N No. 
pos

Percentage 
pos

Mourning Dove (Zenaida macroura) 14 8 57.14 12 7 58.33 26 15 57.69

Northern Cardinal (Cardinalis cardinalis) 66 50 75.76 49 10 20.41 115 60 52.17

Common Yellowthroat (Geothlypis trichas) 1 0 0.00 3 1 33.33 4 1 25.00

Blue Jay (Cyanocitta cristata) 3 0 0.00 2 1 50.00 5 1 20.00

House Finch (Carpodacus mexicanus) 36 5 13.89 22 4 18.18 58 9 15.52

Gray Catbird (Dumetella carolinensis) 71 16 22.54 60 0 0.00 131 16 12.21

Brown-headed Cowbird (Molothrus ater) 12 3 25.00 12 0 0.00 24 3 12.50

European Starling (Sturnus vulgarus) 21 4 19.05 33 2 6.06 54 6 11.11

House Sparrow (Passer domesticus) 302 71 23.51 349 0 0.00 651 71 10.91

Red-winged Blackbird (Agelaius phoeneceus) 36 6 16.67 31 1 3.23 67 7 10.45

American Robin (Turdus migratorius) 160 28 17.50 206 9 4.37 366 37 10.11

Baltimore Oriole (Ictera galbula) 4 1 25.00 8 0 0.00 12 1 8.33

Song Sparrow (Melospiza melodia) 45 3 6.67 43 0 0.00 88 3 3.41

American GoldWnch (Carduelis tristis) 41 1 2.44 87 3 3.45 128 4 3.13

Common Grackle (Quiscalus quiscula) 12 1 8.33 33 0 0.00 45 1 2.22

Swainson’s Thrush (Catharus ustulatus) 33 1 3.03 14 0 0.00 47 1 2.13

All species tested 965 198 20.52 1096 38 3.47 2061 236 11.45

Table 2 Summary of mosquito 
collection and estimates of 
Culex spp. infection rates (using 
maximum likelihood estimation) 
for study sites during Weld 
sampling in the Chicago, IL, 
metropolitan area, 2005–2006

Site 2005 2006

No. 
pools

No. pos 
pools

Infection 
rate

95% CI No. 
pools

No. pos 
pools

Infection 
rate

95% CI

1 68 13 9.68 5.42–16.18 69 8 6.47 3.04–12.30

5 58 13 12.54 7.05–20.93 64 14 15.22 8.73–25.06

7 64 13 11.34 6.37–18.94 67 11 9.35 4.96–16.30

10 26 4 9.74 3.20–23.65 20 1 5.84 0.33–29.63

11 68 13 9.99 5.62–16.66 52 10 11.61 6.00–20.68

13 71 8 6.23 2.92–11.85

15 39 8 11.66 5.49–22.25

17 30 2 4.75 0.85–15.75

19 57 11 10.96 5.80–19.15

EC 36 6 9.44 3.91–19.65 100 21 10.64 6.80–16.00

HS 115 31 13.67 9.49–19.19 67 16 15.02 8.96–23.97

SC 68 13 9.71 5.43–16.23 48 11 12.28 6.51–21.47

WW 101 44 24.80 18.29–33.15 49 6 6.18 2.55–12.85

Total 
study area

604 150 12.32 733 127 9.71
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seroprevalence in 2005 or 2006 (Fig. 2), which suggests
that modeling results were not biased by spatial non-inde-
pendence.

Discussion

We found no evidence to support the hypothesis that avian
richness is negatively correlated to prevalence of WNV in
the Chicago metropolitan area. Relative abundance of indi-
vidual species with high seroprevalence was also unrelated
to mosquito infection rates. Our results indicate high over-
all avian seroprevalence and variation in seroprevalence
across host species. Northern cardinals and mourning doves
displayed the greatest seroprevalence values; since they
were also widespread and common, these species may be
important sentinels for WNV in the Chicago area.

The importance of scale and other ecological factors 
aVecting WNV transmission

As evidenced by viral sequence data, WNV transmission
and evolutionary dynamics operate in response to Wne-scale

environmental and anthropogenic features of the urban
landscape (Bertolotti et al. 2008). This study was conducted
at a Wner spatial scale than the majority of previous studies,
which typically address the dilution eVect at county, state,
and regional scales (reviewed by Keesing et al. 2006;
Swaddle and Calos 2008). Dilution eVects were modeled at
Wne spatial scales in New York (Schmidt and Ostfeld
2000), and Ezenwa et al. (2006) also focused on the scale
of local study sites in Louisiana. Our Wne-scale results from
the Chicago metropolitan area cast doubt on whether
increased host biodiversity has a net eVect on WNV preva-
lence. Without corroborating evidence of similar phenomena

Table 3 Results of general linear model for Culex infection rate (IR)
as a function of year, avian richness, seroprevalence, and combined
relative abundance of highly infected species (i.e., all species with
seroprevalence >20% in either 2005 or 2006)

Predictor 
variable

CoeYcient 95% conWdence 
interval

t P-value

Constant 12.76 ¡3.54–29.06 1.65 0.12

Year 0.95 ¡5.41–7.3 0.31 0.76

Avian richness ¡1.67 ¡8.21–4.87 ¡0.54 0.60

Seroprevalence 20.02 ¡9.42–49.46 1.44 0.17

Highly infected ¡6.69 ¡15.47–2.1 ¡1.61 0.13

Table 4 Results of logistic regression model relating avian richness,
year, Culex infection rate (IR), and bird species identity to antibody
status (1 = seropositive, 0 = seronegative) of individual birds captured
in the Chicago metropolitan area, 2005–2006

a Coding of dummy variables for species identity resulted in a predic-
tor variable for each species tested (not shown in table). None of the
species variables were signiWcant predictors of individual antibody
status (P-values all 0.90 or greater)

Predictor CoeYcient Odds ratio (95% CI) P-value

Variable Estimate

Constant ¡16.7 – 0.99

Year ¡0.91 0.40 (0.22–0.73) <0.01

Richness 0.22 1.24 (0.74–2.09) 0.41

Culex IR 6.37 582.16 (64.06–5290.12) <0.01

Speciesa – – >0.90

Fig. 2 Weighted K-function for seroprevalence values in 2005 (a) and
2006 (b). Dotted lines indicate the range of L(d) values generated from
Monte Carlo simulations, solid line indicates the K-function calculated
from observed data, and the x-axis indicates the distance at which pres-
ence of clustering is tested. Since the K-function lies completely within
the simulation range in both 2005 and 2006, there is no evidence for
spatial autocorrelation
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operating at this mechanistic scale, coarse scale diversity-
prevalence relationships may be merely correlational, not
causative.

Ezenwa et al. (2006) indicate that high diversity of non-
passerine species (i.e., raptors, waterfowl, etc.) may be
responsible for diluting WNV transmission in Louisiana;
however, the authors also failed to detect a relationship
between WNV prevalence and passerine diversity. General-
izations stating that non-passerine species are important for
diluting WNV transmission fail to consider the relative
paucity of data for competence of this species group.
Experimental infection studies suggest that passerines (i.e.,
songbirds) are generally more competent than non-passe-
rines (Komar et al. 2003; Kilpatrick et al. 2007); however,
further research would be necessary to fully document the
competence of many non-passerine species.

Exclusion of non-passerine species groups from this
study limits the scope of our inference; however, we pro-
vide two lines of evidence suggesting that non-passerines
are not central to WNV transmission in our study area.
First, gulls, waterfowl, and raptors were usually observed
Xying high overhead, but they were rarely noted near the
ground. These transitory species are therefore unlikely to
interact with local WNV vectors. Second, during a simulta-
neous study to assess mosquito feeding preferences in the
same study sites, passerines comprised 85% of avian blood
meals from Culex pipiens mosquitoes (Hamer et al. 2009,
in press). If non-passerines were key WNV hosts, we would
expect to Wnd evidence that mosquitoes fed upon them
often. Thus, our primary focus on passerine species is
warranted, since we found no evidence suggesting that
non-passerine species are important to WNV transmission
in our study area.

The dilution hypothesis assumes frequency-dependent
transmission (i.e., the biting rate remains at a constant fre-
quency regardless of host density); mosquito-borne disease
transmission is also typically assumed to be frequency-
dependent. In density-dependent systems (i.e., where biting
rate varies with host density; Dobson 2004), high host
diversity may have no eVect or increase transmission, since
increases in host diversity lead to more contacts between
infected vectors and susceptible hosts. Though we found no
apparent association between species richness and preva-
lence in this study, our results do not necessarily imply that
WNV transmission in the Chicago area is density depen-
dent. These Wndings highlight the possibility that extrinsic
factors and variation in vector and host competence may be
more important than avian community structure for deter-
mining variation in WNV prevalence. WNV transmission is
also likely dependent upon the vector-to-host density ratio,
with lower ratios corresponding to lower WNV prevalence.
Research to address these factors will further clarify Wne-
scale dynamics of WNV transmission.

Four conditions have been established as necessary for
the dilution eVect in vector-borne diseases (Ostfeld and
Keesing 2000a). Discrepancies from these conditions may
partially explain why we found no evidence for a relation-
ship between richness and WNV prevalence. In accord with
the Wrst condition, primary WNV vectors display generalist
host preferences, feeding on multiple host species (Tempelis
1975; Molaei et al. 2006); however, since Culex mosqui-
toes appear to prefer to feed on some bird species while
avoiding others (Kilpatrick et al. 2006; Hamer et al. 2009,
in press), increased host diversity may not divert mosquito
bites away from optimal WNV hosts. The second condition
requires infection occurring primarily via vector-borne
transmission. While there is some evidence for non-vector-
borne modes of transmission [i.e., from parent to oVspring
in mosquitoes (Komar 2001) and from bird to bird
(McLean et al. 2001)], the principal route of WNV trans-
mission is between birds and mosquitoes. The third condi-
tion, that host competence varies among species, is well
accepted and documented in laboratory studies (Komar
et al. 2003), but it is unclear how competence varies intra-
speciWcally.

The fourth condition of the dilution hypothesis states
that optimum hosts are common and widespread. To test
this criterion, we calculated a Pearson correlation between
host competence and relative abundance of each species.
We used host competence values from studies of experi-
mental infection (Komar et al. 2003; Komar et al. 2005),
where competence was deWned as the product of suscepti-
bility, infectiousness to vectors, and duration of infection.
The relationship between host competence and relative
abundance was weak (r = 0.11), suggesting that optimal
hosts are not necessarily common in the Chicago study
area. If optimal hosts are uncommon, they are more likely
to be present in species-rich communities than species-poor
communities (Davies et al. 2000); therefore, greater diver-
sity would enhance rather than dilute transmission.

Annual weather Xuctuations appear to be more impor-
tant than bird community structure for driving variation
in WNV transmission in the Chicago area and may par-
tially explain the strong year eVects noted in these analy-
ses (see also Epstein and DeWllipo 2001; Platonov et al.
2001; Bell et al. 2005; Shaman et al. 2005). Above aver-
age heat and drought characterized the Chicago summer
of 2005, but rainfall was much greater in 2006. The 2005
season was favorable for creating Culex breeding sites
and increasing productivity, since hot and dry conditions
prevent Xushing of Culex larvae from storm water catch
basins. Intense heat also shortens breeding cycles and
decreases extrinsic incubation periods in mosquitoes
(Reisen et al. 2006). Further study of temperature and
precipitation will help clarify the relationship between
climate and WNV transmission.
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Combined results for all bird species indicate that the bird
community is still displaying WNV seroprevalence at a
high rate, 5 years after the initial emergence of WNV in the
Chicago area. Despite a signiWcant decline in overall sero-
prevalence in 2006, total average seroprevalence for the
study was a relatively high 11.5%. Studies in Florida in
2000 (Godsey et al. 2005), Georgia in 2000–2004 (Gibbs
et al. 2006), and statewide surveys of Illinois in 2002
(Ringia et al. 2004) and 2001–2004 (Beveroth et al. 2006),
indicate seroprevalence values considerably lower than those
reported here. Studies reporting greater seroprevalence than
those in this study were generally conducted in areas of
recent WNV emergence (e.g., New York in 2000 and 2001,
Komar et al. 2001a, b). AmpliWcation and persistence
of WNV transmission is a function of multiple interactive
factors. Causes for high-level persistence of WNV in the
Chicago area may include temperature and moisture
regimes that are favorable for ampliWcation, water drainage
systems that support mosquito overwintering and breeding,
spatial and temporal patterns of Culex mosquito abundance,
or landscape features, such as extensive green space, that
allow high contact rates between competent vectors and
hosts (Ruiz et al. 2004).

Our results indicate that northern cardinals and mourn-
ing doves experienced unusually high seroprevalence lev-
els. Cardinals have displayed high WNV seroprevalence in
other regions (Komar et al. 2001b; Gibbs et al. 2006); how-
ever, the 76% seroprevalence from 2005 in our study is the
highest documented for this species. Mourning dove sero-
prevalence was also much lower in other studies (Ringia
et al. 2004; Gibbs et al. 2006). Though our results indicate
that high seroprevalence in mourning doves and cardinals is
unrelated to their abundance, these species meet the criteria
of Gibbs et al. (2006) as optimal WNV sentinels; both spe-
cies are widespread, easily captured, closely associated
with humans, and exhibit an antibody response and low
mortality rate after WNV infection. House sparrows, the
most abundant and widespread species, appear to be poor
sentinels for WNV, since all house sparrows tested in 2006
(n = 349) were seronegative. Moreover, estimates of host
selection in the study area suggest that Culex mosquitoes
avoid feeding on house sparrows (Hamer et al. 2009, in
press).

Conclusion

Findings from this study strongly suggest that avian com-
munity structure is unrelated to prevalence of WNV in the
Chicago metropolitan area. These results from a Wne-scale

study call into question whether increased host diversity
has a net eVect on WNV prevalence at coarse spatial scales.
Understanding factors related to the dynamics of WNV
transmission, such as variation in vector and host compe-
tence and mosquito feeding preference, will clarify causes
for variation of WNV transmission. Dynamic models that
incorporate these ecological details, while simultaneously
considering climatic features, such as temperature and pre-
cipitation, will improve upon models that consider only a
single aspect of the transmission system.

Acknowledgments We thank the Village of Oak Lawn, Illinois,
especially the Department of Public Works, who generously provided
laboratory space during the study, as well as the municipalities who
cooperated with us during Weld research (Alsip, City of Chicago, Ever-
green Park, Harvey, Indian Head Park, Orland Park, Palos Hills). T.
Thompson, G. Amore, S. Dallman, D. Gohde, M. Goshorn, J. McClain,
M. Neville, B. Pultorak, and E. Secker, provided Weld assistance, and
B. Bullard, B. Morgan, A. Thelen, M. Bender, L. Abernathy, and J.
McClain assisted with processing samples in the laboratory. L. Stark
and the Florida Department of Health provided positive control chick-
en serum, L. Mosher and the Michigan Department of Community
Health provided the positive control NY99 strain of WNV, and the
CDC Division of Vector Borne Infectious Diseases supplied the 4G2
and 6B6C-1 antibodies. This work was supported by the NSF/NIH pro-
gram in the Ecology of Infectious Diseases (grant 04-29124). All Weld-
work was carried out under appropriate collecting permits with
approvals from the University of Illinois Animal Use Protocol no.
03034 and Institutional Animal Care and Use Committee at Michigan
State University, Animal Use Form no. 12/03-152-00.

References

Andreadis TG, Thomas MC, Shepard JJ (2005) IdentiWcation guide to
the mosquitoes of Connecticut. The Connecticut Agricultural
Experiment Station, New Haven

Bell JA, Mickelson NJ, Vaughan JA (2005) West Nile virus in host-
seeking mosquitoes within a residential neighborhood in Grand
Forks, North Dakota. Vector Borne Zoonotic Dis 5:373–382.
doi:10.1089/vbz.2005.5.373

Bernard KA, MaVei JG, Jones SA, KauVman EB, Ebel GD, DuPuis
APII, Ngo KA, Nicholas DC, Young DM, Shi P-Y, Kulasekera
VL, Edison M, White DJ, Stone WB, New York State West Nile
Virus Surveillance Team , Kramer LD (2001) WNV infection in
birds and mosquitoes, New York State, 2000. Emerg Infect Dis
7:679–685

Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of
serological memory by polyclonal activation of human memory B
cells. Science 298:2199–2202

Bertolotti L, Kitron UD, Walker ED, Ruiz MO, Brawn JD, Loss SR,
Hamer GL, Goldberg TL (2008) Fine scale genetic variation and
evolution of West Nile virus in a transmission “hot spot” in sub-
urban Chicago, USA. Virology 374:381–389

Beveroth TA, Ward MP, Lampman RL, Ringia AM, Novak RJ (2006)
Changes in seroprevalence of West Nile virus across Illinois in
free-ranging birds from 2001 through 2004. Am J Trop Med Hyg
74:174–179

BiggerstaV BJ (2006) PooledInfRate, version 3.0: a microsoft excel
add-in to compute prevalence estimates from pooled samples

Blitvich BJ, Marlenee NL, Hall RA, Calisher CH, Bowen RA, Roehrig
JT, Komar N, Langevin SA, Beaty BJ (2003) Epitope-blocking
123

http://dx.doi.org/10.1089/vbz.2005.5.373


Oecologia (2009) 159:415–424 423
enzyme-linked immunosorbent assays for the detection of
serum antibodies to West Nile virus in multiple avian species.
J Clin Microbiol 41:1041–1047. doi:10.1128/JCM.41.3.1041-
1047.2003

Chen D, Aldstadt J, Getis A (2008) Point pattern analysis version 1.0.
San Diego State University

Davies KF, Margules CR, Lawrence JF (2000) Which traits of species
predict population declines in experimental forest fragments?
Ecology 81:1450–1461

Dobson AP (2004) Population dynamics of pathogens with multiple
host species. Am Nat 164:S64–S78. doi:10.1086/424681

Epstein PR, DeWllipo C (2001) West Nile virus and drought. Global
Change Hum Health 2:2–4

Ezenwa VO, Godsey MS, King RJ, Gupthill SC (2006) Avian diversity
and West Nile virus: testing associations between biodiversity and
infectious disease risk. Proc R Soc B 273:109–117. doi:10.1098/
rspb.2005.3284

Gibbs SEJ, Allison AB, Yabsley MJ, Mead DG, Wilcox BR, Stallknecht
DE (2006) West Nile virus antibodies in avian species of Geor-
gia, USA: 2000–2004. Vector Borne Zoonotic Dis 6:57–72.
doi:10.1089/vbz.2006.6.57

Gilbert L, Norman R, Laurenson K, Reid HW, Hudson PJ (2001) Dis-
ease persistence and apparent competition in a three-host commu-
nity: an empirical and analytical study of large scale wild
populations. J Anim Ecol 70:1053–1061

Godsey MS, Blackmore MS, Panella NA, Burkhalter K, Gottfried K,
Halsey LA, Rutledge R, Langevin SA, Gates R, Lamonte KM,
Lambert A, Lanciotti RS, Blackmore CGM, Loyless T, Stark L,
Oliver T, Conti L, Komar N (2005) West Nile virus epizootiology
in the southeastern United States, 2001. Vector Borne Zoonotic
Dis 9:483–484

Gylfe A, Bergstrom S, Lundstrom J (2000) Reactivation of Borrelia
infection in birds. Nature 403:724–725

Hamer GL, Walker ED, Brawn JD, Loss SR, Ruiz MO, Goldberg TL,
Schotthoefer AM, Brown WM, Wheeler E, Kitron UD (2008) Rapid
ampliWcation of West Nile virus: the role of hatch year birds. Vector
Borne Zoonotic Dis 8:57–67. doi:10.1089/vbz.2007.0123

Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO,
Hayes DB, Walker ED (2009) Host selection by Culex pipiens
mosquitoes and West Nile virus ampliWcation. Am J Trop Med
Hyg (in press)

Hayes CG (1989) West Nile fever. In: Monath TP (ed) The Arbovi-
ruses: epidemiology and ecology. CRC Press Inc, Boca Raton,
pp 59–88

Holt RD, Dobson AP, Begon M, Bowers RG, Schauber EM (2003)
Parasite establishment in host communities. Ecol Lett 6:837–842.
doi:10.1046/j.1461-0248.2003.00501.x

Illinois Department of Agriculture (2008) Illinois Gap Analysis Pro-
gram, Land Cover ClassiWcation. (online) URL: http://www.agr.
state.il.us/gis/pass/gapdata. Accessed 7-15-2008

Illinois Department of Public Health. West Nile virus. [online] URL:
http://www.idph.state.il.us/envhealth/wnv.htm. Accessed 7-15-
2008

Keesing F, Holt RD, Ostfeld RS (2006) EVects of species diversity on
disease risk. Ecol Lett 9:485–498. doi:10.1111/j.1461-0248.
2006.00885.x

Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD (2006)
Host heterogeneity dominates West Nile virus transmission. Proc
R Soc B 273:2327–2333. doi:10.1098/rspb.2006.3575

Kilpatrick AM, LaDeau SL, Marra PP (2007) Ecology of West Nile vi-
rus transmission and its impact on birds in the western hemi-
sphere. Auk 124:1121–1136

Kleen VL, Cordle L, Montgomery RA (2004) The Illinois Breeding
Bird Atlas. Illinois Natural History Survey, Champaign

Komar N, Panella NA, Burns JE, Dusza SW, Mascarenhas TM, Talbot
TO (2001a) Serologic evidence for West Nile virus infection in

birds in the New York City vicinity during an outbreak in 1999.
Emerg Infect Dis 7:621–625

Komar N, Burns J, Dean C, Panella NA, Dusza S, Cherry B (2001b)
Serologic evidence for West Nile virus infection in birds in Staten
Island, New York, after an outbreak in 2000. Vector Borne
Zoonotic Dis 1:191–196

Komar N (2001) West Nile virus: epidemiology and ecology in North
America. Adv Virus Res 61:185–234

Komar N, Langevin S, Hinten DB, Nemeth N, Edwards E, Hettler DL,
Davis B, Bowen R, Munning M (2003) Experimental infection of
the New York 1999 strain of West Nile virus in North American
birds. Emerg Infect Dis 9:311–322

Komar N, Panella NA, Langevin SA, Brault AC, Amador M, Edwards
E, Owen JC (2005) Avian hosts for West Nile virus in St. Tammany
Parrish, Louisiana, 2002. Am J Trop Med Hyg 73:1031–1100

LaDeau SL, Kilpatrick AM, Marra PP (2007) West Nile virus emer-
gence and large-scale declines of North American bird popula-
tions. Nature 447:710–713. doi:10.1038/nature05829

Lampman RL, Novak RJ (1996) Oviposition preferences of Culex
pipiens and Culex restuans for infusion-baited traps. J Am Mosq
Control Assoc 12:23–32

Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise
B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, MacKenzie JS,
Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M,
Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara
T, Gubler DJ (1999) Origin of the West Nile virus responsible for
an outbreak of Encephalitis in the northeastern United States.
Science 286:2333–2337. doi:10.1126/science.286.5448.2333

Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage
HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS,
Roehrig JT (2000) Rapid detection of West Nile virus from hu-
man clinical specimens, Weld-collected mosquitoes, and avian
samples by a TaqMan reverse transcriptase-PCR assay. J Clin
Microbiol 38:4066–4071

McLean RG, Ubico SR, Docherty DE, Hansen WR, Sileo L, McNamara
TS (2001) West Nile virus transmission and ecology in birds. Ann
NY Acad Sci 951:54–57

McLean RG (2006) West Nile virus in North American birds. Ornithol
Monogr 60:44–64. doi:10.1642/0078-6594(2006)60[44:WNVI-
NA]2.0.CO;2

Meyer RP, Hardy JL, Reisen WK (1990) Diel changes in adult mos-
quito microhabitat temperatures and their relationship to the
extrinsic incubation of arboviruses in mosquitoes in Kern County,
California. J Med Entomol 27:607–614

Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck
CR (2006) Host feeding patterns of Culex mosquitoes and West
Nile virus transmission, northeastern United States. Emerg Infect
Dis 12:468–474

Naugle DE, Aldridge CL, Walker BL, Cornish TE, Moynahan BJ,
Holloran MJ, Brown K, Johnson GD, Schmidtmann ET, Mayer
RT, Kato CY, Matchett MR, Christiansen TJ, Cook WE, Creekmore
T, Falise RD, Rinkes ET, Boyse MS (2004) West Nile virus:
pending crisis for greater sage-grouse. Ecol Lett 7:704–713.
doi:10.1111/j.1461-0248.2004.00631.x

Norman R, Bowers RJ, Begon M, Hudson PJ (1999) Persistence of
tick-borne virus in the presence of multiple host species: tick res-
ervoirs and parasite-mediated competition. J Theor Biol 200:111–
118. doi:10.1006/jtbi.1999.0982

Ostfeld RS, Keesing F (2000a) The function of biodiversity in the ecol-
ogy of vector-borne zoonotic diseases. Can J Zool 78:2061–2078.
doi:10.1139/cjz-78-12-2061

Ostfeld RS, Keesing F (2000b) Biodiversity and disease risk: the case
of Lyme disease. Conserv Biol 14:722–728. doi:10.1046/j.1523-
1739.2000.99014.x

Peixoto ID, Abramson G (2006) The eVect of biodiversity on the han-
tavirus epidemic. Ecology 87:873–879
123

http://dx.doi.org/10.1128/JCM.41.3.1041-1047.2003
http://dx.doi.org/10.1128/JCM.41.3.1041-1047.2003
http://dx.doi.org/10.1086/424681
http://dx.doi.org/10.1098/rspb.2005.3284
http://dx.doi.org/10.1098/rspb.2005.3284
http://dx.doi.org/10.1089/vbz.2006.6.57
http://dx.doi.org/10.1089/vbz.2007.0123
http://dx.doi.org/10.1046/j.1461-0248.2003.00501.x
http://www.agr.state.il.us/gis/pass/gapdata
http://www.agr.state.il.us/gis/pass/gapdata
http://www.idph.state.il.us/envhealth/wnv.htm
http://dx.doi.org/10.1111/j.1461-0248.2006.00885.x
http://dx.doi.org/10.1111/j.1461-0248.2006.00885.x
http://dx.doi.org/10.1098/rspb.2006.3575
http://dx.doi.org/10.1038/nature05829
http://dx.doi.org/10.1126/science.286.5448.2333
http://dx.doi.org/10.1642/0078-6594(2006)60[44:WNVINA]2.0.CO;2
http://dx.doi.org/10.1642/0078-6594(2006)60[44:WNVINA]2.0.CO;2
http://dx.doi.org/10.1111/j.1461-0248.2004.00631.x
http://dx.doi.org/10.1006/jtbi.1999.0982
http://dx.doi.org/10.1139/cjz-78-12-2061
http://dx.doi.org/10.1046/j.1523-1739.2000.99014.x
http://dx.doi.org/10.1046/j.1523-1739.2000.99014.x


424 Oecologia (2009) 159:415–424
Petersen LR, Roehrig JT (2001) West Nile virus: a reemerging global
pathogen. Emerg Infect Dis 7:611–614

Platonov AE, Shipulin GA, Shipulina OY, Tyutyunnik EN, Frolochkina
TI, Lanciotti RS, Yazyshina S, Platonov OV, Obukhov IL,
Zhukov AN, Vengerov YY, Pokrovskii VI (2001) Outbreak of
West Nile virus infection, Volgograd Region, Russia, 1999.
Emerg Infect Dis 7:128–132

Reisen WK, Fang Y, Martinez VM (2006) EVects of temperature on
transmission of West Nile virus by Culex tarsalis (Diptera: Culic-
idae). J Med Entomol 43:309–317

Reynolds RT, Scott JM, Nussbaum RA (1980) A variable circular-plot
method for estimating bird numbers. Condor 82:309–313.
doi:10.2307/1367399

Ringia AM, Blitvich BJ, Koo H-Y, Van de Wyngaerde M, Brawn JD,
Novak RJ (2004) Antibody prevalence of West Nile virus in birds,
Illinois, 2002. Emerg Infect Dis 10:1120–1124

Rocke T, Converse K, Meteyer C, McLean B (2005) The impact of dis-
ease in the American White Pelican in North America. In: Ander-
son DW, King DT, Coulson J (eds) Waterbirds, special
publication 1: the biology and conservation of the American
White Pelican 28:87–94

Ruiz MO, Tedesco C, McTighe TJ, Austin C, Kitron U (2004) Envi-
ronmental, social determinants of human risk during a West Nile
virus outbreak in the greater Chicago area, 2002. Int J Health
Geogr 3:11

Schmidt KA, Ostfeld RS (2000) Biodiversity and the dilution eVect in
disease ecology. Ecology 82:609–619

Shaman J, Day JF, Stieglitz M (2005) Drought-induced ampliWcation
and epidemic transmission of West Nile Virus in southern Flor-
ida. J Med Entomol 42:134–141. doi:10.1603/0022-2585(2005)
042[0134:DAAETO]2.0.CO;2

SimberloV D (1972) Properties of the rarefaction diversity measure-
ment. Am Nat 106:414–418

Staszewski V, McCoy KD, Tveraa T, Boulinier T (2007) Interannual
dynamics of antibody levels in naturally-infected long-lived colo-
nial birds. Ecology 88:3183–3191

Swaddle JP, Calos SE (2008) Increased avian diversity is associated
with lower incidence of human West Nile infection: observation
of the dilution eVect. PLOS One 3:e2488

Tempelis CJ (1975) Host feeding patterns of mosquitoes with a review
of advances in analysis of blood meals by serology. J Med
Entomol 11:635–653

Thomas L, Laake JL, Strindberg S, Marques FFC, Buckland ST,
Borchers DL, Anderson DR, Burnham KP, Hedley SL, Pollard
JH, Bishop JRB, Marques TA (2005) Distance 5.0, Release 5.
Research Unit for Wildlife Population Assessment, University of
St. Andrews, UK. http://www.ruwpa.stand.ac.uk/distance/

Turrell MJ, Dohm DJ, Sardelis MR, O’Guinn ML, Andreadis TG,
Blow JA (2005) An update on the potential of NA mosquitoes
(Diptera: Culicidae) to transmit WNV. J Med Entomol 42:57–62

U.S. Census Bureau. American FactWnder: 2000 census of population
and housing, summary Wle 3. (online) URL: http://factfinder.census.
gov. Accessed 7-15-2008

U.S. Geological Survey: North American Breeding Bird Survey. 1998
BBS Instructions. (online) URL: http://www.pwrc.usgs.gov/bbs/
participate/instructions.html. Accessed 7-15-2007

Woolhouse MEJ, Dye C, Etard J-F, Smith T, Charlwood JD, Garnett
GP, Hagan P, Hii JLK, Ndhlovu PD, Quinnell RJ, Watts CH,
Chandiwana SK, Anderson RM (1997) Heterogeneities in the
transmission of infectious agents: implications for the design of
control programs. Proc Natl Acad Sci USA 94:338–342.
doi:10.1073/pnas.94.1.338

Zinkernagel RM, Hengartner H (2006) Protective “immunity” by
pre-existent neutralizing antibody titers and preactivated T cells
but not by so-called “immunological memory”. Immunol Rev
211:310–319
123

http://dx.doi.org/10.2307/1367399
http://dx.doi.org/10.1603/0022-2585(2005)042[0134:DAAETO]2.0.CO;2
http://dx.doi.org/10.1603/0022-2585(2005)042[0134:DAAETO]2.0.CO;2
http://www.ruwpa.stand.ac.uk/distance/
http://factfinder.census.gov
http://factfinder.census.gov
http://www.pwrc.usgs.gov/bbs/participate/instructions.html
http://www.pwrc.usgs.gov/bbs/participate/instructions.html
http://dx.doi.org/10.1073/pnas.94.1.338

	Avian host community structure and prevalence of West Nile virus in Chicago, Illinois
	Abstract
	Introduction
	Materials and methods
	Study area
	Estimation of bird species richness and abundance
	Collection of bird and mosquito samples
	Laboratory testing of samples
	Data analyses

	Results
	Seroprevalence of bird community and individual species
	Predictors of Culex infection rate and West Nile virus antibody status in birds

	Discussion
	The importance of scale and other ecological factors aVecting WNV transmission
	Overall seroprevalence and importance of individual host species

	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


