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4Attwater Prairie Chicken National Wildlife Refuge, Eagle Lake, TX, USA
5Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA

AAC, 0000-0002-3412-0487; SAH, 0000-0002-4955-048X; JEL, 0000-0001-6462-3045

Invasive species may impact pathogen transmission by altering the distri-

butions and interactions among native vertebrate reservoir hosts and

arthropod vectors. Here, we examined the direct and indirect effects of the

red imported fire ant (Solenopsis invicta) on the native tick, small mammal

and pathogen community in southeast Texas. Using a replicated large-

scale field manipulation study, we show that small mammals were more

abundant on treatment plots where S. invicta populations were experimen-

tally reduced. Our analysis of ticks on small mammal hosts demonstrated

a threefold increase in the ticks caught per unit effort on treatment relative

to control plots, and elevated tick loads (a 27-fold increase) on one

common rodent species. We detected only one known human pathogen

(Rickettsia parkeri), present in 1.4% of larvae and 6.7% of nymph on-host

Amblyomma maculatum samples but with no significant difference between

treatment and control plots. Given that host and vector population dynamics

are key drivers of pathogen transmission, the reduced small mammal and

tick abundance associated with S. invicta may alter pathogen transmission

dynamics over broader spatial scales.
1. Introduction
Invasive species can directly or indirectly alter vector-borne disease systems by

changing the abundance of, or interactions between, vectors and their hosts.

Previous studies have most commonly implicated the invader in altering

species relationships in ways that support vector-borne pathogen transmission

and, therefore, increase disease risk. For example, a widespread, invasive shrub

increases human risk of ehrlichiosis because it provides habitat for deer that

host infected ticks [1], and densities of ticks and tick hosts were greatest in

areas that had been invaded by the causative agent of sudden oak death [2].

By contrast, with few exceptions (e.g. [3]), invasive species have less frequently

been implicated in the reduction of infectious disease transmission. However,

invasive host species may dilute vector-borne disease risk consistent with the

dilution effect hypothesis [4]. For example, infection of native mice with
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Table 1. Mammal captures presented by species and plot type at both Attwater Prairie Chicken National Wildlife Refuge (APCNWR) and a private ranch in
Goliad County, Texas (GRR). (Number of captures and percentage of total captures per site (in parentheses) are indicated for each species across site and plot
type. Treatment plots are those that were treated with Extinguish PlusTM to suppress red imported fire ants.)

species
APCNWR
treatment

APCNWR
control

GRR
treatment GRR control total

Sigmodon hispidus (hispid cotton rat) 354 (68.5%) 163 (31.5%) 11 (100%) 0 (0%) 528

Baiomys taylori (northern pygmy mouse) 127 (62.0%) 78 (38.0%) 107 (65.6%) 56 (34.4%) 368

Reithrodontomys fulvescens (fulvous harvest

mouse)

69 (51.9%) 64 (48.1%) 63 (84.0%) 12 (16.0%) 208

Chaetodipus hispidus (hispid pocket mouse) 12 (42.9%) 16 (57.1%) 9 (56.3%) 7 (43.7%) 44

Peromyscus leucopus (white-footed mouse) 0 (0%) 27 (100%) 10 (90.9%) 1 (9.1%) 38

Cryptotis parva (least shrew) 0 (0%) 1 (100%) 6 (66.7%) 3 (33.3%) 10

Perognathus merriami (Merriam’s pocket

mouse)

0 (0%) 0 (0%) 0 (0%) 1 (100%) 1

Oryzomys palustris (marsh rice rat) 0 (0%) 1 (100%) 0 (0%) 0 (0%) 1

total 562 350 206 80 1198
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flea-transmitted Bartonella species was reduced with increasing

densities of introduced voles [5].

Here, we investigate the potential impact of the invasive

red imported fire ant (Solenopsis invicta) on tick, small

mammal and pathogen communities in southeast Texas.

Ticks and small mammals transmit and maintain numerous

zoonotic pathogens that are significant public health

concerns. Solenopsis invicta are known to predate small mam-

mals [6], and their presence is associated with changes in

mammal foraging activity [7] and habitat selection [8] poss-

ibly mediated by changes in food resources [9]. Solenopsis
invicta are also associated with reductions in tick populations

[10,11], although effects vary between tick species [10]. Using

a large-scale manipulative experiment to reduce S. invicta
populations across an area of historic invasion, we expected

that S. invicta predation and avoidance behaviour by

mammals and ticks would lead to decreased mammal, tick

and pathogen abundance in plots where S. invicta were in

high density relative to treatment plots where S. invicta
were experimentally suppressed.
Figure 1. A violin/box plot hybrid demonstrating the number of small
mammal captures on treatment and control plots. Asterisks denote means.
2. Material and methods
The manipulative experiment occurred at two field sites separ-

ated by over 160 km in southeast Texas: Attwater Prairie

Chicken National Wildlife Refuge (APCNWR) and a private

ranch in Goliad County (GRR). Each field site was partitioned

into two treatment plots and two control plots. Treatment plots

were chemically treated with Extinguish PlusTM (Central Life

Sciences, Schaumburg, IL, USA) for S. invicta suppression as

part of an existing management plan for Attwater’s prairie-

chicken (Tympanuchus cupido attwateri) [12]; control plots were

not treated. Efficacy of the treatment was monitored by

setting out fatty lures in treatment and control plots ([12]; see

the electronic supplementary material).

Small mammals and their attached ticks were collected using

seed-baited Sherman live traps (H.B. Sherman Traps, Tallahas-

see, FL, USA). Three line transects (approx. 20 m apart), each

with 20 traps spaced 10 m apart, were spread across each of

the four plots at both field sites, resulting in a total of 60 traps

per plot and 240 traps per site. Small mammal trapping was

conducted for two consecutive nights each month (APCNWR:
trapping occurred from June 2013 until September 2014; GRR:

October 2013 until July 2014, with the exception of January

2014). All captured mammals were marked with an ear tag,

identified to species and inspected for ticks, which were

removed, identified and stored in 70% ethanol. Off-host tick

presence was assessed via drag sampling (see the electronic sup-

plementary material). On-host ticks were tested for infection

with microbes in the genera Rickettsia and Borrelia (see the

electronic supplementary material).

We used general linear mixed models assuming a negative

binomial error distribution to analyse counts of mammals and

on-host ticks across treatment and control plots. We used a zero-

inflated (ZI) model if it fit the data better (i.e. lower Akaike

information criteria) than the same model that did not account

for ZI. All models were implemented in program R (v. 3.2.2) in

the package glmmADMB (v. 0.8.3.2). Site (two levels, APCNWR

and GRR) and season (four levels, spring ¼March to May;

summer ¼ June to August; autumn ¼ September to November;

winter ¼ December to February) were added to models as

http://rsbl.royalsocietypublishing.org/
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Figure 2. A violin plot demonstrating the probability density of tick loads on two species of small mammals. Dots represent actual observations, jittered horizontally
to better demonstrate sample sizes.
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random intercepts (mammal abundance was spatio-temporally

heterogeneous throughout the study; see the electronic sup-

plementary material). Sampling effort (effective trap nights) per

transect was included in the model using the offset function.

Significance of all treatment coefficients was assessed through a

log-likelihood ratio test of nested models assuming a x2-distri-

bution. Association between pathogen infection of ticks (larval

pools, larval individuals, and nymphs analysed separately) and

S. invicta treatment was tested with a Fisher’s exact test.
3. Results
The majority (64.1%) of small mammals captured were from

S. invicta-suppressed treatment plots (table 1; figure 1;

electronic supplementary material, figure 1). Our model pre-

dicted a 1.8-fold increase in the total number of small

mammals captured per unit effort on treatment relative

to control plots ( p , 0.001). The effect was consistent

among the three most commonly sampled mammal species

(Sigmodon hispidus, Baiomys taylori and Reithrodontomys fulves-
cens). Our model predicted a 2.0-fold increase in S. hispidus
captured on treatment relative to control plots ( p , 0.001).

Effect sizes were slightly lower for B. taylori (1.4-fold increase

on treatment plots, p ¼ 0.01) and R. fulvescens (1.4-fold

increase on treatment plots, p ¼ 0.05).

Ninety-eight mammals (8.7% of captures) were parasi-

tized by a total of 237 ticks, including 142 larvae and 95

nymphs (electronic supplementary material, tables S2 and

S3). Nearly all ticks were Ambylomma maculatum (99.6%)

with the exception of one nymphal Ixodes scapularis (0.4%).

The rodent species most heavily parasitized by ticks were

S. hispidus (15.6% of total captures), Chaetodipus hispidus
(7.7%), R. fulvescens (7.7%) and B. taylori (1.4%). Our model

predicted a threefold increase in the number of on-host

ticks caught per unit effort on treatment relative to control

plots ( p ¼ 0.01). When the number of rodents captured

during a sampling night was included in the model with

the offset function, the model still predicted an increase in

the number of ticks on treatment plots, but this effect was

no longer significant ( p ¼ 0.45). This suggests that the effect

of a greater number of on-host ticks on treatment plots was

primarily driven by an increased capture rate of small

mammals along treatment transects. To directly investigate
tick loads across treatment and control plots, we modelled

the number of ticks per host individual in S. hispidus and

R. fulvescens, two well-sampled (N ¼ 482 and 195, respectively)

and highly parasitized species in our data. Tick loads did not

vary significantly across plots in S. hispidus ( p ¼ 0.90,

figure 2), possibly due to demographic effects that resulted

after an explosive increase in the population (see the elec-

tronic supplementary material). However, our model

predicted a 27-fold increase in the tick loads on R. fulvescens
on treatment relative to control plots ( p ¼ 0.003; figure 2).

Drag sampling of 30 200 m2 of vegetation resulted in the col-

lection of 86 ticks, with no difference between treatment and

control plots (see the electronic supplementary material).

A total of 126 individual tick nymphs and larval pools

removed from mammals were tested for infection with

Rickettsia species, of which 34 (27.0%) tested positive (elec-

tronic supplementary material, table S4). Most rickettsial

sequences had high homology to species regarded as

endosymbionts (n ¼ 27; electronic supplementary material,

table S4). A total of seven A. maculatum samples were infected

with the human pathogen R. parkeri (1.4% prevalence in larvae

and 6.7% prevalence in nymphs). The proportion of ticks

infected with R. parkeri was not different between treatment

and control plots ( p . 0.05). A total of 83 tick samples were

tested for infection with Borrelia species of which B. lonestari
was found in a single A. maculatum nymph on an APCNWR

treatment plot (electronic supplementary material, table S4).
4. Discussion
The invasion of red imported fire ants in the southern United

States has had large, negative consequences on ecological

communities (reviewed in [13]). We observed decreased

small mammal abundances in the presence of S. invicta
(figure 1), possibly associated with direct (e.g. predation)

and indirect effects (e.g. changes in habitat selection and

avoidance behaviour) [7,8]. Furthermore, we observed that

increased small mammal populations on S. invicta-suppressed

plots were associated with an increased abundance of on-host

ticks (figure 2), consistent with host population regulation of

tick populations [14]. Our data suggest that S. invicta reduce

small mammal populations that, in turn, regulate local tick

http://rsbl.royalsocietypublishing.org/
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populations. Thus, these invasive ants may influence tick

abundance by affecting the behavioural or physiological

mechanisms that control the number of ticks on host individ-

uals, although tick populations may also be influenced

directly by S. invicta predation. However, the collection of

off-host ticks by drag sampling, which was largely restric-

ted to the adult life stage, was not significantly different

between control and treatment plots (see the electronic

supplementary material). Notably, our study did not investi-

gate other potentially important hosts that support ticks

at the larval and nymph stage (i.e. small ground passerines),

or adult-stage ticks (i.e. larger mammals), which may also

affect tick abundance. It is possible that lower small

mammal abundance could increase the frequency of ticks

feeding on alternative hosts, including humans, thus

increasing disease risk (e.g. [15]).

The cascading effects of S. invicta on native small mammal

and tick populations have important potential implications for

the transmission of tick-borne pathogens, which represent

significant public health concerns. Small mammals such as

S. hispidus, which was heavily parasitized in this study, are

reservoirs for numerous tick-borne pathogens including

those in the genera Borrelia, Rickettsia, Anaplasma and Babesia,

as well as multiple viruses [16]. Increased small mammal

and tick abundance in S. invicta-suppressed areas are expected

to intensify contact rates between ticks and hosts, facilitating

pathogen transmission. Indeed, increasing host abundance is

one of the main drivers of tick-borne disease emergence [17].

Higher tick loads on R. fulvescens on treatment plots directly

increase vector-host ratios, potentially resulting in increased

tick-borne pathogen transmission [18].

The only known human pathogen we detected in ticks

removed from mammals was R. parkeri, which was present

in 1.4% of larvae and 6.7% of nymphs. Rickettsia parkeri is a

spotted fever group Rickettsia long associated with A. macula-
tum and recently associated with human disease in the

United States [19]. Although the apparent prevalence of

R. parkeri infection in our study is low compared with

recent research in Virginia (27–55% prevalence; [20]), these

studies examined adult ticks located on the northern edge

of the S. invicta invasion. It is unknown how the current
pathogen community in rodent-associated ticks compared

with that which occurred in the area prior to S. invicta inva-

sion, and the spatial and temporal scale of the contemporary

experimental suppression of S. invicta may not be sufficient to

detect any alteration in pathogen infection associated with a

reduction in ant numbers.

While S. invicta have pervasive impacts on the ecosystems

they invade [16], including depressing populations of endan-

gered taxa [12], land managers need to consider the

incidental effects that S. invicta suppression may have on

tick-borne disease dynamics in some systems. Our work

implies that during its invasion S. invicta may have produced

ecosystem cascading effects that could lead to decreased

vector, host and pathogen abundance.
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