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from 2002 to 2015 in Harris County,
Texas, USA.
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Schmalhausen's law.
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withWest Nile virus eight months later.
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Earlywarning systems for vector-borne diseases (VBDs) prediction are an ecological applicationwhere data from
the interface of several environmental components can be used to predict future VBD transmission. In general,
models for early warning systems only consider average environmental conditions ignoring variation inweather
variables, despite the prediction from Schmalhausen's law about the importance of environmental variability for
biological systems. We present results from a long-term mosquito surveillance program from Harris County,
Texas, USA, wherewe use time series analysis techniques to study the abundance andWest Nile virus (WNV) in-
fection patterns in the local primary vector, Culex quinquefasciatus Say. We found that, as predicted by
Schmalhausen's law, mosquito abundance was associated with the standard deviation and kurtosis of environ-
mental variables. By contrast,WNV infection rateswere associatedwith 8-month lagged temperature, suggesting
environmental conditions during overwintering might be key for WNV amplification during summer outbreaks.
Finally, model validation showed that seasonal autoregressive models successfully predicted mosquito WNV in-
fection rates up to 2 months ahead, but did rather poorly at predicting mosquito abundance, a result that might
reflect impacts of vector control for mosquito population reduction, geographic scale, and other artifacts gener-
ated by operational constraints of mosquito surveillance systems.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Earlywarning systems of vector-borne diseases (VBDs) are crucial to
the effective and efficient control of a disease prior to the appearance of
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human infections. To develop earlywarning systems, a complete under-
standing of the ecology of the disease system and its extrinsic environ-
mental drivers is necessary. Early warning systems have used a variety
of methods and data sources such as vegetation and weather in combi-
nation with geographic information systems/remote sensing to predict
various VBDs including malaria in Africa, American Cutaneous Leish-
maniasis in Costa Rica, dengue in Brazil, and West Nile virus (WNV) in
the United States of America (USA), among many other VBDs (Chaves
and Pascual, 2007; Connor et al., 1999; Craig et al., 1999; Kuhn et al.,
2005; Lowe et al., 2013; Manore et al., 2014; Rogers and Randolph,
2003; Ruiz et al., 2010; Shaman and Day, 2005; Shand et al., 2016;
Thomson and Connor, 2000; Thomson et al., 2006).

Most models used in the development of early warning systems for
disease prediction have used mean (average) environmental variables
as inputs formodel development. However, studies suggest thatmodels
could be improved by including measurements of environmental vari-
ability. For example, it has been observed that higher order statistical
moments of environmental variability in weather, such as kurtosis or
standard deviation, allow more accurate prediction of abundance in
several mosquito species (Chaves, 2016; Chaves et al., 2011a; Chaves
et al., 2012; Hayes and Downs, 1980; Ng et al., 2018; Shaman and Day,
2007). This prediction follows Schmalhausen's law, the ecological prin-
ciple stating that organisms are sensitive to not only average patterns,
but also to variability patterns (Chaves and Koenraadt, 2010;
Lewontin and Levins, 2000). For instance, organisms are susceptible to
variability in their environment when stressed by any single environ-
mental component (Chaves and Koenraadt, 2010; Lewontin and
Levins, 2000). In principle, environmental variability can be measured
by higher order statistical moments, such as the variance, which mea-
sures a variable's dispersion around its mean (Fig. S1A). Another exam-
ple is kurtosis, which measures whether a variable is more
unpredictable on the extremes of a distribution with respect to the
mean, generating a leptokurtic distribution, or if an environmental var-
iable is more unpredictable around the mean, generating a platykurtic
distribution (Fig. S1B) (Chaves et al., 2011a).

In general, it is expected that biological systems aremore sensitive to
platykurtic environmental components, provided that there ismore un-
certainty regarding values around amean, than in a leptokurtic environ-
ment, where there is relatively low variability when the environment
fluctuates around the mean (Levins, 1968). Due to their complex biol-
ogy, VBDs are excellent model systems to test the hypothesis around
Schmalhausen's law, given the confluence of many different organisms
that have different degrees of autonomy and interactionswith changing
environments in both their life cycles and the ecological interactions
leading to pathogen transmission (Chaves, 2017).

The VBD patterns of interaction with the changing environment
might be one of the key components to explain the emergence of
new diseases and their successful establishment in new habitats
(Levins et al., 1994). Among VBDs, WNV is a zoonotic disease with
an enzootic cycle involving avian amplification hosts and mosquito
vectors that recently invaded North America (Weaver and Reisen,
2010). Despite the abundance of studies examining its association
with environmental variables (Brown et al., 2008b; Chase and
Knight, 2003; Degroote et al., 2014; Randolph and Rogers, 2010;
Reisen, 1995; Reisen et al., 2008; Reisen et al., 2006a; Reisen et al.,
2006b; Reisen et al., 2010; Ruiz et al., 2010; Shand et al., 2016), little
to no studies inquire about the impacts of environmental variability
on its transmission.

West Nile virus is a pathogen that was first introduced to the USA in
1999, and has since spread throughout North America. Since its intro-
duction in theUSA, 46,086 cases ofWNVand 2,017 deaths have been re-
corded as of 2016 (CDC, 2016). The WNV transmission cycle involves
avian hosts that amplify the virus acquired via infected mosquito
bites, and then can infect bloodsuckingmosquitoes that continue trans-
mission among avian hosts or bridge transmission to “dead-end hosts,”
such as horses and humans, which are not able to infect mosquitoes
(Weaver and Reisen, 2010). Culex spp. mosquitoes are the primary
WNV enzootic and amplification vectors (Turell et al., 2005; Weaver
and Reisen, 2010), and also one of several species capable of “bridge
transmission” between animal and human hosts (Hamer et al., 2008a;
Hamer et al., 2008b; Kilpatrick et al., 2005).

The amplification ofWNV is highly heterogeneous each season,with
periodic outbreak years mixed with low levels of virus transmission,
and weather is one of the suggested key factors driving these patterns
(Chung et al., 2013; Ruiz et al., 2010). For example, weather plays a
vital role in the abundance of mosquito populations and subsequent
pathogen transmission (Chaves, 2017). Increasing ambient tempera-
ture, up to a point, will increase the rate of development, productivity,
and abundance of mosquito populations and decrease the extrinsic in-
cubation period, which is the time interval between the uptake of an in-
fectious blood meal until the mosquito is capable of transmitting the
virus (Dohm et al., 2002; Reisen et al., 2006b; Rueda et al., 1990;
Smith, 1987).

In addition, precipitation is known to have important consequences
on mosquito productivity and abundance (Chuang et al., 2011;
Degroote et al., 2014; Ruiz et al., 2010), which also influences WNV
transmission. However, the influence of prior precipitation on WNV
transmission is complex and no clear patterns have emerged frommul-
tiple studies (Chuang et al., 2012; Chung et al., 2013; Landesman et al.,
2007; Paz and Semenza, 2013). Precipitation creates small pools of
water that become enriched, creating suitable oviposition habitats for
gravid female mosquitoes (Britton, 1914; Calhoun et al., 2007;
Soverow et al., 2009; Takeda et al., 2003). Culex quinquefasciatus Say
can often be found in artificial containers that are common in urban en-
vironments (Andreadis, 2012; Diaz-Badillo et al., 2011; Vezzani, 2007)
and this mosquito species selects nutrient enriched habitats (Chaves
et al., 2009). The survival of Cx. quinquefasciatus mosquitoes relies on
these containers because they are often filledwith enriched organicma-
terial and water collected from precipitation (Chaves et al., 2011b;
Ponnusamy et al., 2008). However, heavy rainfall can flush larval habi-
tats and reduce adult mosquito productivity (Koenraadt and
Harrington, 2008; Shaman et al., 2002). Furthermore, drought condi-
tions can disrupt the aquatic ecosystem of predators and competitors
that serve to limit mosquito larval activity, allowing larvae to fully de-
velop and emerge as adults (Chase and Knight, 2003).

Temperature and precipitation can affect the amount of vegetation
present. Vegetation can serve as resting habitats for adult mosquitoes,
roosting sites for avian hosts that female mosquitoes utilize for a
blood meal, and sources of nutrition during the development cycle of
the immature stages of mosquitoes (Brown et al., 2008a; Gardner
et al., 2013; Ward et al., 2005).

Texas has experienced consistent epidemics contributing 12.0% and
14.0% of the national humanWNV cases and deaths, respectively (CDC,
2016). During the largest epidemic of WNV in 2012, Texas contributed
1868 total cases (West Nile fever andWest Nile neuroinvasive disease)
and 89 deaths, whichwas 32.9% of the cases and 31.1% of the deaths re-
ported that year, respectively (CDC, 2016). The costs associated with
this outbreak including medical care, vector control, and productivity
loss were estimated to be approximately $47.6 million (Murray et al.,
2013). Given the significant economic loss associated with WNV, it is
important to understand the ecology of WNV transmission dynamics
as a key role for effective intervention strategies. Quantitative predictive
models as part of an early warning system for WNV transmission have
been developed for certain regions of the USA, but they have not been
parameterized for Texas, USA. In central and southeast Texas, the south-
ern house mosquito Culex quinquefasciatus is the most relevant mos-
quito species involved in the transmission cycle (Lillibridge et al.,
2004; Molaei et al., 2007). Being able to predict when and where
WNV infection in the Culex mosquito population is greatest provides
an early warning system and the opportunity to control mosquitoes be-
fore bridge transmission to humans and alert the public with the appro-
priate messages to reduce WNV exposure risk.
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Utilizing a long-term dataset from Harris County, Texas, USA we ex-
amined the influence of weather patterns, including mean conditions
and higher order statistical moments like standard deviation (SD) and
kurtosis, on the abundance and WNV infection of Cx. quinquefasciatus,
the mainWNV vector in southeast Texas. We hypothesized that annual
and seasonal weather patterns affect mosquito biology andWNV trans-
mission dynamics, which contribute to the temporal heterogeneity in
the abundance and WNV infection rates of Cx. quinquefasciatus. We
also expected that previous winter temperatures, which set the condi-
tions for mosquito overwintering (Chaves et al., 2018; Chung et al.,
2013; Dohm and Turell, 2001; Reisen et al., 2006a), might influence
Cx. quinquefasciatus WNV infection rates in the subsequent summer,
thus creating the expectation of long delays in the association between
temperature and WNV infection rates in Cx. quinquefasciatus.

2. Materials and methods

2.1. Study area

Harris County, TX includes the metropolitan city of Houston and has
a population of 4.7 million people according to the 2017 USA Census es-
timates, making it the most populated county in Texas and the third
most populated county in the USA (United States Census Bureau,
2018). Its unique location along the Gulf makes it prone to severe
weather such as hurricanes, which result in major flooding events. To
counteract flooding events, Harris County has a large flood control sys-
tem comprised of several different water containment parts, such as
bayous, channels, storm drains, and sewers, many of which are aging
and rich with organic materials suitable for mosquito breeding
(Molaei et al., 2007). Following outbreaks of St. Louis Encephalitis
(SLE) virus, a similar arbovirus to WNV, which amplifies in Culex mos-
quitoes and birds with spillover transmission to humans, Harris County
first began its mosquito surveillance program in 1965. Since then, the
surveillance program has generated considerable mosquito disease re-
search, expanded their surveillance to include WNV, dengue,
chikungunya, and Zika viruses, and generated a robust long-term mos-
quito abundance and WNV infection dataset (Dennett and Debboun,
2017). Other publications have focused on the most populous areas
Fig. 1.Map of Harris County, weather stations and trap locations. The backgroundmap is courte
and storm-sewer (SS) traps, are indicated with different symbols. Weather stations are color
temperature. For details about symbols and color codes, please refer to the inset legend.
within the I-610 highway loop, which mainly comprises Houston
(Curtis et al., 2014; Dennett et al., 2007a; Rios et al., 2006), however,
this study will analyze data from the entire county.

2.2. Mosquito data

Harris County Public Health Mosquito and Vector Control Division
(HCPH MVCD) conducted weekly mosquito surveillance from 2002 to
2016. HCPH MVCD consistently used a combination of storm sewer
(SS) and gravid (GV) traps forWNV surveillance throughout the county
(Fig. 1). The SS traps are modified CDC Light Traps baited with dry ice
and attached to man hole covers underground to attract host-seeking
mosquitoes (Molaei et al., 2007). The GV traps mainly attract
ovipositing adult female mosquitoes and are baited with hay infusion
water and placed in residential yards, usually under vegetation. The
hay infusion is composed of mixing 1.3 kg of Coastal bermudagrass,
Cynodon dactylon (L.), with 42 gal of water and then aged for
10–14 days (Dennett et al., 2007b; White et al., 2009). Other trap
types used by HCPH MVCD included under-house traps, which are
CDC traps baited with dry ice and placed in crawl spaces underneath
houses (Morris and DeFoliart, 1969), and BG traps, which are baited
with BG lures from Biogents (Regensburg, Germany). While HCPH
MVCD used a combination of traps, only data from SS and GV traps
were analyzed given their ubiquitous usage throughout the study pe-
riod and the county.

The mosquito collection protocol from Harris County has been de-
scribed in detail elsewhere (Curtis et al., 2014; Molaei et al., 2007).
Briefly, traps are placed in the afternoon between 1:30 PM and
5:00 PM and then collected the following morning between 7:30 AM
and10:30 AM. Traps are placed into “operational areas,”which are com-
prised of lines that divide the county for surveillance, inspection, and
control operations (Hunt and Hacker, 1984). The 268 operational
areas are based on municipal, district, and zip code lines. Live mosqui-
toeswere brought back to the laboratory and frozen at−70 °C.Mosqui-
toes were identified by species and sex by using keys in Darsie Jr. and
Ward (2005) and on a chill table to preserve the presence of the virus
and then sorted into pools of ≤50 mosquitoes, with a maximum of
three pools per trap.Mosquito abundancewas estimated as the average
sy of Google Earth –Harris County is highlighted and the location ofmosquito traps, gravid
coded according to whether they recorded temperature and rainfall, only rainfall, or only
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number of mosquitoes trapped during one trap-night. Thus, monthly
abundance estimates are the total number of mosquitoes divided by
the total number of traps deployed each month. Monthly mosquito
abundance was estimated for SS and GV separately, considering these
traps collect mosquitoes at different physiological states, and also com-
bined mosquito counts from both traps, assuming this estimate will be
more representative of field mosquito populations which include both
host-seeking and ovipositing females. The HCPH MVCD Virology Labo-
ratory tested for WNV antigen in mosquito pools using an enzyme-
linked immunosorbent assay (ELISA) and positive results were con-
firmed with a Rapid Analyte Measurement Platform (RAMP) test
(Lillibridge et al., 2004; Randle et al., 2016). To be considered a positive
pool, the mosquito pool must test positive on both the ELISA and RAMP
test. A positive pool is a mosquito pool that contains at least one Cx.
quinquefasciatus mosquito positive for WNV. Using data from all the
pools tested, we estimated monthly infection rates under the assump-
tion that the diagnostic methods have a sensitivity near 1, using a max-
imum likelihood estimationmethod for unequal pool size that is fit with
a complimentary log-log link generalized linear model (Farrington,
1992) and confidence intervals that are estimated by inverting a likeli-
hood ratio test (Rigg et al., 2019; Speybroeck et al., 2012). None of our
monthly estimates were based on a sample where all pools were posi-
tive for WNV.

When generating the time series, we inputtedmissing values for De-
cember 2003 and January 2004, when no traps were deployed by HCPH
MVCD, whichwas done via interpolation using a loess regression as de-
scribed by Ng et al. (2018).

2.3. Weather and vegetation data

For this study, we acquired data for global climatic indices and local
weather for Harris County, TX. To evaluate the impact of global climatic
phenomena on Cx. quinquefasciatus abundance and its WNV infection
rate, we downloaded monthly data for the Niño 3.4 index from the
USANational Oceanic and Atmospheric Administration (NOAA) Climate
Prediction Center (NOAANationalWeather Service, 2018). The Niño 3.4
index is associated with interannual rainfall dynamics in Texas (Li and
Kafatos, 2000), based on the Extended Reconstructed Sea Surface Tem-
perature version 5 (Huang et al., 2017), and corresponds to sea surface
temperatures measured in the area delimited by 5°N–5°S and 170°W–
120°W of the Pacific Ocean. Furthermore, the Niño 3.4 index defines
the two alternate states during the El Niño Southern Oscillation
(ENSO), El Niño (“hot ENSO phase,” anomalously warm waters in the
eastern tropical Pacific Ocean) and La Niña (“cold ENSO phase,” anoma-
lously cool waters).

To evaluate the impact of local climatic indices in our data, we used
data fromweather stations located inside Harris County or neighboring
counties (Fig. 1). We used the Climate Data Explorer from the Royal
Netherlands Meteorological Institute (KNMI, 2018) to download daily
weather data, and searched for stations that had at least 10 years of
data. We specifically selected the following weather stations (coordi-
nates and Global Historical Climatological Network (GHCN) Code)
(Fig. 1): Baytown (29.91°N, −94.99°E, USC00410586), Clover Field
(29.52°N, −95.24°E, USW00012975), Hobby Airport (29.64°N,
−95.28°E, USW00012918), Houston Intercontinental Airport
(29.98°N, −95.36°E, USW00012960), Hooks Airport (30.07°N,
−95.56°E, USW00053910), and Sugarland (29.62°N, −95.66°E,
USW00012977), which had both temperature and rainfall records for
our study period. Stations that had data for only rainfall included: Cy-
press (30.02°N, −95.71°E, USC00412206), New Caney (30.14°N,
−95.18°E, USC00416280), North Houston (29.87°N, −95.53°E,
USC00414327), Richmond (29.58°N, −95.76°E, USC00417594), and
Westbury (29.66°N, −95.63°E, USC00414325). Data for only tempera-
ture was available at Dayton (30.10°N, −94.93°E, USR0000TDAY).

We processed the daily data to generate monthly time series for the
study period. We computed the monthly mean, SD, and kurtosis for
temperature and rainfall in Harris County. The SD and kurtosis esti-
mates were based on daily temporal and spatial data from the weather
stations in Fig. 2. For comparison, we also downloaded from the Earth
System Research Laboratory (ESRL) gridded weather data from Global
Historical Climatology Network/Climate Anomaly Monitoring System
(GHCN/CAMS) 2 m (temperature) (NOAA ESRL, 2018a) and global pre-
cipitation climatology project (GPCP) (rainfall) (NOAA ESRL, 2018b),
with resolutions of 0.5° and 0.25°, respectively, which were only avail-
able as monthly averages based on daily data.

We downloadedmonthly images for vegetation indices with a 1-km
resolution vegetation (M*D13A3) based on MODIS satellite images
(Didan, 2015). The Normalized Difference Vegetation Index (NDVI)
and Enhanced Vegetation Index (EVI) are considered proxies for vegeta-
tion growth (Pettorelli et al., 2005). The images, which are courtesy of
the NASA Land Processes Distributed Active Archive Center (LP DAAC),
United States Geological Survey (USGS)/Earth Resources Observation
and Science (EROS) Center (Sioux Falls, South Dakota), were
downloaded from the server (NASA, 2018) using the packageMODIStsp
for the software R (Busetto and Ranghetti, 2016). Each image was
clipped to the surface of Harris County, and stacked into a geotiff using
the package raster for R (Brunsdon and Comber, 2015). For each
monthly image, we estimated the mean, SD and kurtosis for NDVI and
EVI during the study period, which were based on information from
the image pixels.

2.4. Statistical analysis

2.4.1. Seasonality
Seasonal profiles for all the mosquito time series, vegetation, and

weather variables were built using monthly boxplots (Venables and
Ripley, 2002).

2.4.2. Non-stationary patterns of association in the time series
We studied the association of cycles in the time series using a cross

wavelet coherence analysis to identify non-stationary association pat-
terns (i.e., changes through time) and the association between cycles
in the time series, or coherence, whose period might be variable and
not repetitive or seasonal (Cazelles et al., 2007; Chaves and Pascual,
2006). We used this technique to study the association between mos-
quito abundance and infection with the Niño 3.4 index, NDVI, EVI, tem-
perature, and rainfall.

2.4.3. Time series modeling
To fit and select variables for monthly time series models of mos-

quito abundance andWNV infections in pools, we used a standard pro-
tocol for the time series analysis (Hurtado et al., 2014; Hurtado et al.,
2018). Thefirst step consists of assessing the correlation of each time se-
ries with itself by inspecting the autocorrelation function (ACF) as well
as the correlation of consecutive time lags using a partial autocorrela-
tion function (PACF) (Shumway and Stoffer, 2011). Information from
the ACF and PACF will identify a null model that considers the autocor-
relation structure of the focal time series. This null model was used to
pre-whiten the times series with the Kalman filter. Pre-whitening is a
process to remove a common autocorrelative structure that can gener-
ate spurious correlations from the climate, weather, and vegetation in-
dices (Shumway and Stoffer, 2011). Residuals from the autonomous
model and the pre-whitened time series were used to estimate cross
correlation functions (CCFs), which show the correlation between two
time series as a function of fixed time lags (Hoshi et al., 2014). Once
we identified significant lags of the covariates between 1 and
12 months (P b 0.05), the lags were used to fit full models of mosquito
abundance and mosquito WNV infection. Models were simplified by
model selection through backward elimination (Kuhn and Johnson,
2013), following the minimization of the Akaike Information Criterion
(AIC) (Faraway, 2016). This process allows model selection among
models with similar parameter numbers (Faraway, 2016). For the



Fig. 2.Monthly time series. (A) Sea surface temperature in the El Niño 3.4 region (Niño 3.4) (°C) (B) average number of mosquito per trap (C) West Nile virus mosquito infection rate
(D) vegetation indices, including the Normalized Difference Vegetation Index (NDVI), and the Enhanced Vegetation Index (EVI) (E) average temperature (°C) (F) average rainfall
(mm/day) (G) standard deviation, SD, of NDVI and EVI (H) SD of temperature (I) SD of rainfall (J) kurtosis, K, of NDVI and EVI (K) K of temperature (L) K of rainfall. In all panels ENSO
phases are highlighted by colors, for details, see inset legend of panel A. Panels B and C are based on combined data from gravid and storm sewer traps. In panels D, G and J NDVI and
EVI are differentiated by color, see inset legend of panel D for details.
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best-fit models, we tested if variables, whose parameters were not sig-
nificant, could be eliminated using likelihood ratio tests (Faraway,
2016), and the resulting models are reported as the best models in the
Results section. For the best models, we verified time series model as-
sumptions using standard procedures for the time series analysis
(Shumway and Stoffer, 2011).
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2.4.4. Time series model validation
We validated the time series models by leaving observations from

2016 out of the model fitting and forecasted mosquito abundance and
WNV infection rates at time steps of 1, 2, 3, 4, 6 and 12 months. We
tested the predictive ability of the model by estimating the predictive
R2 (Chaves and Pascual, 2007), which is defined as the variance normal-
ized mean square error of the prediction, i.e.

PredR
2 ¼ 1− mean square error=variance of the seriesð Þ: ð1Þ

The predictive R2 has a straightforward interpretation, where a
PredR2 of 1 indicates perfect forecasts, but a negative value, or near 0, in-
dicates a poor predictive ability (Chaves and Pascual, 2007).

3. Results

Data time series are shown in Fig. 2, where color codes are used to
represent the phases of ENSO. During the study period, the most ex-
treme ENSO occurred in 2015–2016, as shown by the Niño 3.4 index
time series (Fig. 2A).

The HCPH MVCD used 686 and 476 locations for GV and SS traps
throughout Harris County, respectively. A total of 10,533,033 female
Cx. quinquefasciatus were collected using GV (5,371,840 mosquitoes,
51% of the samples) and SS (5,161,193 mosquitoes, 49%) traps. The
total sampling effort, which is defined as the amount of mosquito trap-
ping deployed for surveillance by Harris County, was 130,567 trap-
nights, with 55% of the sampling effort from GV traps (71,849 trap-
nights) and the remaining 45% from SS traps (58,718 trap nights).
Monthly mosquito abundance, based on combined GV and SS trap col-
lections, was highly variable (Fig. 2B), having an average (±SD) of
74.84 ± 47.89. Meanwhile, the average abundance for GV and SS traps
was 67.49 ± 41.94 and 79.85 ± 64.05, respectively. Mosquito abun-
dance peaks were observed when ENSO was not going through its hot
and cold phases, a pattern also observed for the time series based on
GV (Fig. S2A) and SS (Fig. S2B) traps.

The monthly average WNV infection rate (±SD), estimated only for
months with positive pools, was 0.00158± 0.00235, which is a propor-
tion, i.e., for each 10,000 testedmosquitoes, around 16 were infected by
WNV. As observed with mosquito abundance, WNV infection peaks
were observed at times when ENSO activity did not go through the
hot and cold phases, but overall, followed cold ENSO phases (Fig. 2C).
Unlike what was observed for mosquito abundance, temporal patterns
of mosquito infection were nearly identical when comparing infection
estimates from GV (Fig. S2C) and SS (Fig. S2D) traps. For this reason,
we used the WNV infection time series based on GV and SS traps for
subsequent analyses. The NDVI and EVI had similar temporal patterns
during the study period (Fig. 2D), with data suggesting that vegetation
growth at Harris County slows down during the cold ENSO phase.
Meanwhile, temperature (Fig. 2E) is higher during the cold ENSO
phase, and the estimate using station data was very similar to the data
from the gridded database (Fig. S2E). Rainfall peaked during the hot
ENSO phase followed by the cold phase (Fig. 2F), but this temporal pat-
tern was not clear for the gridded rainfall (Fig. S2F). Given themore ap-
parent patterns of ENSO impacts on theweather observed fromweather
stations, we used this data for subsequent analyses.

The SDs of the vegetation indices (Fig. 2G) were similar to the mean
time series of the vegetation indices. By contrast, the SD of temperature
(Fig. 2H) and rainfall (Fig. 2I) reached maximum values during the hot
ENSO phase, followed by the cold phase. The vegetation indices
(Fig. 2J) and temperature (Fig. 2K) were more leptokurtic during the
hot and cold ENSOphases,meaning thatmost of the variability occurred
around the mean value than in the ENSO phases, and more platykurtic
when ENSO was not passing through a hot or cold phase. In contrast,
rainfall (Fig. 2L) was most leptokurtic during the cold ENSO phase and
most platykurtic during the hot ENSO phase.
Seasonal patterns of mosquito abundance for Cx. quinquefasciatus,
based on both GV and SS traps, (Fig. 3A) were bimodal having a large
peak in May and a second small peak in November. When separating
the abundance by trap type, this bimodal pattern was not observed in
GV traps, which had a single peak in May (Fig. S3A). However, the bi-
modal seasonality was observed in SS traps (Fig. S3B), which had
peaks in May and November. Given these marked differences in abun-
dance betweenGV and SS traps,we decided to perform time series anal-
yses of the combined abundance time series, but also of mosquito
abundance based on GV and SS traps separately.

Seasonal WNV infection patterns were unimodal with a seasonal
peak in August (Fig. 3B), a pattern also observed separately for GV
(Fig. S3C) and SS (Fig. S3D) traps. The NDVI has a seasonal peak from
April to August (Fig. 3C), while EVI (Fig. 3D) has a unique peak in
May. Temperature also had a unimodal pattern (Fig. 3E), with a peak
in August, which was also observed in the gridded temperature data
(Fig. S3E). Rainfall had two seasons, one relatively dry from January to
April, and a wet season for the rest of the year, with August being con-
sistently the driest month during thewet season (Fig. 3F), a similar pat-
tern was also observed in the gridded data (Fig. S3F).

The cross wavelet coherence analyses show that interannual cycles,
with a period between 3 and 4 years, of mosquito abundance (Fig. 4A)
and WNV mosquito infection rates (Fig. 4B) were coherent with those
observed in ENSO. Briefly, this is inferred by looking at the y-axis of
the plot through time, i.e., the x-axis. In the y-axis, scale indicates the
period of the cycles, and the coherence, which is coded by colors, mea-
sures the overlap in cycles present in the studied time series. Coherence
varies between 0 and 1 and can be interpreted like a correlation esti-
mate, where values near 1 indicate a near perfect association in the cy-
cles of the studied time series and values close to 0 represent an
independence of cycles at a given time scale (Chaves et al., 2014).Mean-
while, NDVI and EVI had seasonal cycles, with periods of 1 year, associ-
ated with mosquito abundance (Fig. 4C, E) and WNV infection rate
(Fig. 4D, F). Temperature cycles were both seasonal and interannual,
with cycles of 2 to 4 years, coherent with mosquito abundance
(Fig. 4G) and WNV infection rates (Fig. 4H). Meanwhile, rainfall cycles
were associated at an interannual scale, with cycles of 3 to 4 years,
with cycles of mosquito abundance, which between 2002 and 2010
were also highly coherent at the seasonal scale with rainfall, (Fig. 4I)
and with WNV infection rates (Fig. 4J).

The autocorrelation functions of mosquito abundance (Fig. 5A) and
WNV infection rates (Fig. 5B) suggested that both time series were at
most second order (autocorrelated up to the second lag) and seasonal
(significantly correlated at lag 12 months), meaning time series were
seasonally autocorrelated with a 12-month lag. That autocorrelation
structure was observed using the partial autocorrelation function of
both mosquito abundance (Fig. 5C) and WNV infection rates (Fig. 5D).

With this information, a seasonal autoregressive model was fitted as
the null model with the following form:

xt ¼ μ þ φ1xt−1 þ φ2xt−2 þ φ12xt−12−φ1φ12xt−13−φ2φ12xt−14 þ εt ð2Þ

where μ is the mean of the time series xt = yt − μ, where yt is either
monthly mosquito abundance or WNV infection rates, t indicates time,
and εt is a normally and identically distributed error. Model selection
for mosquito abundance, the model presented in Eq. (2), suggested
that the following model:

xt ¼ μ þ φ1xt−1 þ φ12xt−12−φ1φ12xt−13 þ εt ð3Þ

was the best null model for abundance estimates based on the com-
bined SS and GV data. This null model was used to pre-whiten the
time series of the weather and vegetation covariates, which were then
used to estimate cross-correlation functions between the average
values of the covariates with mosquito abundance (Fig. 5E) and WNV
infection rate (Fig. 5F), the SD of the covariates with mosquito



Fig. 3. Seasonalmonthly boxplots. (A) Average number ofmosquito per trap (B)WestNile virusmosquito infection rate (C)NormalizedDifference Vegetation Index (NDVI) (D) Enhanced
Vegetation Index (EVI) (E) average temperature (°C) (F) average rainfall (mm/day). Panels A and B are based on combined data from gravid and storm sewer traps.
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abundance (Fig. 5G) andWNV infection rate (Fig. 5H), and the kurtosis
of the covariates with mosquito abundance (Fig. 5I) andWNV infection
rate (Fig. 5J). We also estimated the ACF and PACF of mosquito abun-
dance with GV (Fig. S4A, C) and SS traps (Fig. S4B, D), and the cross-
correlation function of mean, SD, and kurtosis of the covariates with
GV (Fig. S4E, G, I) and SS (Fig. S4F, H, J) traps.

The variables thatwere significantly associatedwithmosquito abun-
dance were then considered in a full model:

xt ¼ μ þ φ1xt−1 þ φ12xt−12−φ1φ12xt−13 þ
X

covt− j þ εt ð4Þ

that included covariates (cov) with time lags j ≥ 0. The process of model
selection for the mosquito abundance model based on GV and SS traps,
the abundancemodel based only onGV traps, and the abundancemodel
based only on SS traps is presented in Tables S1, S2, and S3, respectively.

Parameter estimates for the best mosquito abundance model are
presented in Table 1. Parameters included a positive association with
the standard deviation of NDVI (2-month lag) and temperature kurtosis
(9-month lag). Meanwhile, abundance was negatively associated with
rainfall (no time lag), NDVI kurtosis (12-month lag) and EVI kurtosis
(1-month lag). Significant parameters in the best models for mosquito
abundance based on GV and SS traps separately (Table S4) had similar-
ities with the model based on data from both traps (Table 1). Both of
those models did not have a significant seasonal autoregressive param-
eter, i.e., both time series were not significantly autocorrelated with
themselves with a 12-month lag. Interestingly, both of these models
(Table S4)were associatedwith EVI kurtosiswith 1month of lag, the as-
sociation being negative like in the model of Table 1. Other parameters
sharedwith themodel presented in Table 1 also had the same sign such
as the kurtosis of NDVI with a 12-month lag and a 9-month lag temper-
ature kurtosis for themodel based on SS traps (Table S4). Other param-
eters included variables that were not included in the best model
presented in Table 1, and included both mean, SD, and kurtosis param-
eters (Table S4).
The best model for mosquito WNV infection rates (Table 2) was a
second order seasonal autoregressive model, i.e., with an
autoregressive component similar to the one described in Eq. (2),
with mean temperature at an 8-month lag as a significant covariate.
The process of model selection is shown in Table S5, which showed
that WNV infection rate was not significantly associated (P N 0.05)
with mosquito abundance.

Finally, the process of model validation suggested the predictive
ability of the mosquito abundance model was overall low (Fig. 6A), a
pattern shared with the models based on GV (Fig. S5A) and SS
(Fig. S5B) traps separately, which nevertheless outperformed the
model combining the data fromboth types of traps. By contrast, the pre-
dictive accuracy of the WNV infection rate (Fig. 6B) model was high for
1 (80%) and 2 (60%) months, negative at 3 months, and overall de-
creased as the prediction step increased the number of months pre-
dicted at once.

4. Discussion

Our study found significant weather factors and measurements of
their variability significantly associated with Cx. quinquefasciatus abun-
dance and WNV infection rates during the study period (2002–2016)
in Harris County, TX. Mosquito abundance generally peaked following
the cold phases when ENSO activity did not go through distinct hot or
cold phases (Fig. 2B). During the hot ENSO phase, we generally saw
peaks in rainfall and greater variation in temperature and rainfall
(Fig. 2). On the other hand, the cold ENSO phases were characterized
by hotter temperature peaks and less rainfall, which resulted in less veg-
etation growth inHarris County (Fig. 2). During these hot and cold ENSO
phases, we found lower Cx. quinquefasciatus abundance, which could be
due to the excess rainfall and higher temperatures/low vegetation in the
hot and cold phases, respectively. The increased amount of precipitation
during the hot ENSO phase might wash out larval habitats for Cx.
quinquefasciatus above- and belowground (Koenraadt and Harrington,
2008; Shaman et al., 2002). This phenomenon was true for Cx.



Fig. 4.Crosswavelet coherence analysis. Coherence between sea surface temperature 3.4 (Niño 3.4) and (A)monthly averagemosquito abundance per trap (MAMAPT) (B)West Nile virus
mosquito infection rate (WNVMIR). Normalized Difference Vegetation Index (NDVI) and (C) MAMAPT (D) WNVMIR. Enhanced Vegetation Index (EVI) and (E) MAMAPT (F) WNVMIR.
Temperature and (G) MAMAPT (H) WNVMIR. Rainfall and (I) MAMAPT (J) WNVMIR. In all plots the y-axis presents the scale, or period measured in years, at which two time series
are coherent, while the x-axis represents time. A guide for coherence values is presented to the right of each panel. Coherence goes from zero (blue) to one (red). Red regions in the
plots indicate frequencies and times for which the two series share power (i.e., variability). The cone of influence (where results are not influenced by the edges of the data) and signif-
icantly coherent (P b 0.05) scales through time are indicated by solid lines. MAMAPT andWNVMIR are based on combined data from gravid and storm sewer traps.
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quinquefasciatus in the USA as observed in California (Heft andWalton,
2008) and Georgia (Chaves and Kitron, 2011; Nguyen et al., 2012) and
Cx. pipiens in Illinois (Hamer et al., 2011). Extremely high temperatures
are known to decrease the life span of the mosquito and prematurely
kill mosquitoes before they are able to transmit the virus to a new
host (Brault, 2009; Reisen, 1995; Reisen et al., 2006b). Vegetation is
required for larval development of Cx. quinquefasciatus as it provides a
source of organic matter and nutrients. The importance of vegetation
has been investigated in other areas of the USA such as the cities of
New York, Chicago and Houston, where the presence of vegetation
was positively associated with human risk for WNV (Brownstein et al.,
2002; Nolan et al., 2012; Ruiz et al., 2004).



Fig. 5. Correlation functions. Auto-Correlation function, ACF of (A)monthly averagemosquito abundance per trap (MAMAPT) and (B)West Nile virusmosquito infection rate, (WNVMIR).
Partial Auto-Correlation function, PACF of (C) MAMAPT and (D) WNVMIR. Cross-Correlation functions, CCF of the average value of environmental variables with (E) MAMAPT and
(F) WNVMIR. CCF of the standard deviation, SD, of environmental variables with (G) MAMAPT and (H) WNVMIR. CCF of the kurtosis, K, of environmental variables with (I) MAMAPT
and (J) WNVMIR. In panels E to J environmental variables are color coded, for details, please refer to the insect legend of panel D. MAMAPT and WNVMIR are based on combined data
from gravid and storm sewer traps.
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Our results demonstrate that increased variability in both tempera-
ture and rainfall result in higher abundance of mosquitoes. Measure-
ments of variability were significant covariates in the abundance
Fig. 6. Predictive R2 for models selected as best to explain (A) monthly average
models (Table 1). The significant covariates in the abundance model
further highlight the importance in includingmeasurements of environ-
mental variability to investigate association patterns betweenmosquito
mosquito abundance per trap (B) West Nile virus mosquito infection rate.



Table 1
Parameter estimates for the best time series model explaining changes in Culex
quinquefasciatus abundance sampledwith gravid and storm-sewer traps in Harris County,
TX. σ2 = 1045, Log Likelihood = −705.7, AIC = 1429.4.

Parameters (lag) Mosquito abundance (GV and SS)

Estimates S.E.

Intercept 74.1795 6.3822
AR (1) 0.3873 0.0790
SAR (12) 0.3414 0.0822
Rainfall (0) −2.6398 1.0384
NDVI SD (2) 792.7775 379.7516
NDVI K (12) −14.7881 4.8280
EVI K (1) −8.8210 3.7416
Temperature K (9) 7.8873 2.4330
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abundance dynamics and the weather. The covariates for the best mos-
quito abundance model that combined mosquito counts from both GV
and SS traps included positive associations with the standard deviation
of NDVI with a 2-month lag and the kurtosis of temperature with a 9-
month lag. Rainfall with no lag, NDVI kurtosis with a 12-month lag,
and EVI kurtosis with a 1-month lag had a negative association with
mosquito abundance. The phenomenon emphasizing the importance
of significant variation in weather and vegetation on mosquito abun-
dance follows Schmalhausen's Law, the biological principle stating
that organisms are sensitive to both average environmental conditions
and environmental variability, which has been previously reported for
Cx. quinquefasciatus and other disease vectors (Chaves and Koenraadt,
2010; Hayes, 1975; Hayes and Downs, 1980; Hayes and Hsi, 1975; Ng
et al., 2018). Therefore, the more neutral conditions seen when ENSO
is not going through distinct hot and cold phases may allow for greater
abundance of Cx. quinquefasciatus.

Interestingly, our study did not include temperaturewithin the same
summer season as a significant variable in either of the abundance or in-
fection rate models, which other studies have found among other mos-
quito species (Chuang et al., 2011; Degaetano, 2005; Ruiz et al., 2010).
This could be due to differences in the life history traits for themosquito
species of interest and the regional effects of weather, which may ulti-
mately result in heterogeneous results when comparing relationships
between the weather, mosquito abundance, and infection rates (Ciota
et al., 2014; Wimberly et al., 2014). Instead, we found that temperature
with an 8-month lag was a significantly positive covariate in our WNV
infection rate model (Table 2). Given that infection rates generally
peak around August in Harris County (Fig. 3B), warmer temperatures
during the winter are expected to increase the infection rates the fol-
lowing summer. In general, warmer winter seasons preceding a WNV
season has been a significant factor of interest in other studies using var-
iousmeasurements ofWNV, includingmosquito abundance of different
Culex species, infection rates/vector indexes, and human cases (Chung
et al., 2013; Degroote et al., 2014; Reisen et al., 2010; Wimberly et al.,
2014).

One mechanism for increased infection rates in the summer follow-
ing a mild winter is that warmer temperatures in the winter allow Cx.
quinquefasciatus to remain active gonotrophically and maintain their
populations. Alternatively, Cx. quinquefasciatus can survive through the
Table 2
Parameter estimates for the best time series model explaining changes inWest Nile virus
infection rate of Culex quinquefasciatus in Harris County, TX. σ2 = 1.373e−6, Log
Likelihood = 765.73, AIC = −1519.47.

Parameters (lag) Infection model

Estimates S.E.

Intercept 0.0008 0.0001
AR (1) 0.7620 0.0787
AR (2) −0.3199 0.0797
SAR (12) 0.4757 0.0946
Temperature (8) 0.0003 0.0001
winter by entering quiescence when temperatures drop, but can be-
come active once temperatures increase again (Diniz et al., 2017;
Eldridge, 1968; Reisen et al., 1986). Quiescence is a period of non-
seasonal dormancy characterized by slowed metabolism in response
to environmental stimuli (Clements, 1992). Since Cx. quinquefasciatus
does not enter diapause and is not hormonally-controlled to enter a
state of dormancy, physiological activity can be restored once the stim-
ulus that induces quiescence ceases (Denlinger and Armbruster, 2014;
Diniz et al., 2017; Lacour et al., 2015; Vinogradova, 2007). The sustained
activity in mosquito populations through warmer winter temperatures
also permit themaintenance of low levels of WNV in the overwintering
adults as well as the potential for enzootic activity and horizontal activ-
ity among birds in the winter or spring (Goddard et al., 2003; Hinton
et al., 2015; Montecino-Latorre and Barker, 2018; Nelms et al., 2013).
For example, when Cx. pipiens is inoculated with WNV and held at re-
duced temperatures (10 °C) for 21–42 days, the virus is not fully dis-
seminated. Once the mosquito is transferred to an incubation
temperature of 26 °C, the dissemination rates increased (Dohm and
Turell, 2001). While vertical transmission of WNV is possible, it occurs
inconsistently and at very low rates (Goddard et al., 2003). Studies on
the effects of overwintering in Cx. quinquefasciatus and WNV infection
in Texas are worth investigating further.

Another mechanism for increased WNV infection rates during a
warm winter relates to the opportunistic feeding patterns of Cx.
quinquefasciatus, which more frequently feed on avian hosts (Molaei
et al., 2007). Warmer winter temperatures can signal the arrival of an
early spring, allowing birds to initiate recruitment of young earlier
(Forchhammer et al., 1998; Walther et al., 2002). Consequently, in-
creased populations of susceptible juvenile birds are known to fuel the
amplification of WNV (Hamer et al., 2008b). Mosquito feeding may co-
incidewithwarmer temperatures in thewinter, allowingmosquitoes to
become infected even during periods of expected low activity since
birds may still be viremic or become infected from exposure to feces
containing WNV (Dawson et al., 2007; Eldridge, 1968; Hinton et al.,
2015).

An interesting observation was the difference in mosquito abun-
dance between GV and SS traps. The GV traps exhibited a unimodal
abundance distribution, however, SS traps showed a bimodal distribu-
tion (Fig. S2). The second abundance peak for Cx. quinquefasciatus
trapped in SS traps during November could be attributed to its life his-
tory. The SS traps are placed underground in storm sewers and baited
to capture host-seeking mosquitoes. However, Cx. quinquefasciatuswill
also use storm sewers as hibernacula or shelter during cooler months
to overwinter into the next spring season (Strickman and Lang, 1986).
With this in mind, the second peak in the abundance in November
could be attributed to the mosquito's retreat into underground storm
sewers to avoid harsh winter conditions since this species does not
enter diapause, but instead undergoes quiescence when retreating to
storm drains (Nelms et al., 2013; Nguyen et al., 2012; Reisen, 2012;
Reisen et al., 1986; Reisen et al., 2010; Siirin et al., 2004; Strickman,
1983, 1988; Strickman and Lang, 1986). Dissection studies investigating
overwintering techniques in California have demonstrated that Cx.
quinquefasciatus mosquitoes undergo quiescence rather than diapause,
which is the overwintering technique for Cx. pipiens Linnaeus and Cx.
tarsalis Coquillet. However, this type of study, to the best of our knowl-
edge, has not been performed in Texas and warrants further consider-
ation to elucidate overwintering patterns for mosquitoes found in
storm drains.

The abundancemodels for this study performed poorly (Fig. 6A), but
the infection rate model performed well when predicting between 1
and 2 months ahead (Fig. 6B). The low predictive ability of the abun-
dance model can be attributed to unavoidable logistical constraints
that emerge in large-scale vector surveillance systems such as in Harris
County, TX. For example, our model did not consider mosquito control
efforts by HCPH MVCD that may have affected local mosquito popula-
tions. Mosquito control in Harris County consists of aboveground-
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based ultra-low volume (ULV) adulticiding in response to a positive
mosquito pool. Within the same week of detecting a positive pool,
ULV adulticiding will occur in the operational area (Fredregill et al.,
2011). During peak seasons, adulticiding may occur more than once a
week, which may affect the abundance of mosquitoes trapped by SS
and GV traps that target adult mosquitoes.

Another challenge is related to the temporal and spatial scales of our
study. Given the long temporal range of our data, we used a monthly
scale for the time series analysis. Having a temporal scale of weekly
data would better reflect the finer nuances in mosquito abundance dy-
namics and improve model predictive ability (Chaves et al., 2013;
Chuang et al., 2017). Spatial scale is also an important factor when con-
sidering infection data since results and conclusionsmay differ depend-
ing on the scale chosen for the study (Winters et al., 2010). We
summarized data over a large spatial scale, with Harris County covering
over 4600 km2. At smaller spatial scales, we might better capture local
population dynamics, as observed in more finely grained studies on
mosquito population dynamics (Chaves et al., 2013; Ng et al., 2018).

A final factor to consider when explaining the low predictive ability
of our mosquito abundance models is the movement of trap locations
throughout the county during the study period. A total of 686 and 476
trap locations were used for GV and SS traps, respectively (Fig. 1).
Throughout the studyperiod, only 15GV traps and 24 SS traps remained
in the same location (Fig. S6). In contrast, 392 GV traps and 324 SS traps
were deployed b50 times at the same location, which demonstrates the
lack of consistency in trap locations throughout the study period
(Fig. S6). Inconsistencies from trapping may lead to artifacts and biases
that do not necessarily reflect local population dynamics of the previous
trap locations. The location of the trap influences the mosquito abun-
dance estimates, which may help explain the low predictive capability
of the abundance models given that many of these traps moved
throughout the study period (Brown et al., 2008c).

5. Conclusions

Our study demonstrated the importance of long-term systematic
sampling of mosquitoes to build a predictive model as part of an early
warning system. This is the first study in Texas, and overall the south-
western USA, to use a long-term dataset to examine weather factors
and variability to explain WNV vector abundance and WNV infection
rates. We developed and validated models that can accurately predict
WNV infection rates in response to weather phenomena. After one of
the largest epidemics of WNV in 2012, which was centered in Dallas
County, TX, Harris County can integrate these models into a proactive
system to initiate interventions and allocate resources for vector control
and disease prevention before the appearance of human WNV cases to
prevent another devastating epidemic.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.04.109.
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