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Abstract: Mosquito-borne viruses will continue to emerge and generate a significant public health
burden around the globe. Here, we provide a longitudinal perspective on how the emergence of
mosquito-borne viruses in the Americas has triggered reactionary funding by sponsored agencies,
stimulating a number of publications, innovative development of traps, and augmented capacity. We
discuss the return on investment (ROI) from the oscillation in federal funding that influences demand
for surveillance and control traps and leads to innovation and research productivity.

Keywords: mosquito; emerging virus; outbreak; surveillance; trap; Aedes; Culex; Zika virus; West
Nile virus

1. Introduction

While outbreaks of infectious diseases are devastating to human and animal populations, surges in
private and public funding for outbreak pathogens have positively influenced research and innovation.
Contemporary outbreak response efforts now incorporate digital media; electronic surveillance
tools; mathematical modelling; sequencing; and teams of experts that include anthropologists, social
scientists, and other diverse disciplinarians [1]. Outbreak stimulus funding leads to increased scientific
productivity on outbreak pathogens, and incites innovation [2]. For example, an innovation workshop
convened after an anthrax bioterrorism attack in 2001, to discuss new surveillance and pathogen
detection approaches [3]. The Ebola Grand Challenge program, funded by the US Centers for
Disease Control and Prevention (CDC), United States Agency for International Development (USAID),
the United States Executive Office, and the Department of Defense, provided financial backing to 14
innovative projects to improve the response to Ebola outbreaks. These projects included protective
suits, health care and technology solutions, and decontaminants [4]. The USAID Zika Grand Challenge
program in 2016 received over 900 applications and provided 30 million dollars to innovative ideas
to address Zika virus transmission [5]. Currently, during the COVID-19 pandemic, innovations
are emerging such as new ventilators, drones delivering medical supplies, and the use of artificial
intelligence in medicine [6–9]. Ideally, these scientific advances will aid in combatting the current
epidemic as well as fuel innovation in preparedness for future emerging disease events, leading to
return on investment (ROI).
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The introduction and spread of numerous mosquito-borne viruses around the globe has also
shepherded a wave of innovation to improve upon industry-standard sampling techniques that more
efficiently capture the target vector species, physiological cohort, or virus-infected population of
vectors [10]. Ramirez et al. [10] recently reviewed traditional surveillance approaches in the context
of novel innovations that have advanced surveillance capacity, including pathogen surveillance
from sugar feeding vectors, next-generation sequencing (eDNA (environmental DNA) for presence
or absence of vectors in habitats), and xenosurveillance for vectors and pathogens. Additionally,
modernized sampling strategies have also been expanded to incorporate technical advancements in
such areas as infrared scanning, citizen science, and drones [11–14]. Driving the introduction and
incorporation of novel trapping approaches to surveillance programs is the persistent emergence of
mosquito-borne pathogens.

2. Arbovirus Emergence in the U.S.

Many arboviruses cause a significant disease burden to the public each year. West Nile virus
(WNV) (introduced in 1999), St. Louis encephalitis virus (SLEV), Jamestown Canyon virus (JCV),
La Crosse encephalitis virus (LACV), Eastern equine encephalitis virus (EEEV), and Powassan (POWV,
tick-borne) are tracked through the CDC database, ArboNET [15]. In the last several years, incidence
of JCV and POWV has been increasing [15–18]. Additionally, a multistate outbreak of EEEV occurred
in the northeastern US in 2019, in which the 34 reported cases far exceeded the historical average of
around eight cases/year [19]. Through the first half of the 20th century, Western equine encephalitis
virus (WEEV) was also widespread and caused significant morbidity and mortality in humans and
horses; however, this virus has largely disappeared from most areas over the past several decades for
unconfirmed reasons, with the last human case in the United States reported in 1999 [20,21].

In 2013, chikungunya (CHIKV) was first reported in the Americas, followed by Zika virus
(ZIKV) two years later [22,23]. These virus invasions came during a time of increasing dengue virus
(DENV) incidence, range expansion, and replacement of dominant serotypes in different geographic
areas [24–26]. The Pan American Health Organization (PAHO) reported a 30% increase in the number
of dengue cases, from 7,641,334 between 2001 and 2010 to 10,851,043 between 2011 and 2017 [26,27].
Intensive transmission of Aedes-borne viruses in the Americas coupled with the expanding range of
Ae. aegypti mosquitoes presents a continual threat of these viruses gaining a foothold in the United States
as well [28–30]. To date, cases of DENV, ZIKV, and CHIKV in the United States have predominately
been traveler-associated, with the exception of local transmission of ZIKV in Florida and Texas during
2017 [31,32].

3. Federal Funding and Publications in Response to Arboviral Emergence

When a mosquito-borne virus rapidly spreads around the world and becomes a public health
emergency of international concern, federal agencies allocate substantial funds to fight the virus. In the
U.S., Congress approves these funding packages, such as the $1.1 billion for Zika virus in September,
2016 [33]. This stimulus funding provides agencies such as the National Institutes of Health (NIH), the
Centers for Disease Control and Prevention (CDC), and the National Science Foundation the resources
to allocate funds to public health agencies and researchers to enhance outbreak surveillance and
response efforts. As a proxy for this federal spending allocated to different emerging arboviruses, we
used the NIH RePORTER search query to estimate the funding of projects related to the emergence
of WNV, CHIKV, and ZIKV. We used the key words of ‘’West Nile virus”, ‘’chikungunya virus”, and
‘’Zika virus” in the search feature which queries all project titles, abstracts, and scientific terms. To
compare these invasive mosquito-borne viruses to those endemic to the United States, we also included
three endemic mosquito-borne viruses that have resulted in continual transmission, including human
disease, in the last several decades. These additional virus searches were performed for ‘’Eastern
equine encephalitis virus”, ‘’St Louis encephalitis virus”, and ‘’La Crosse encephalitis virus”. The
search for St. Louis encephalitis virus returned more projects with ‘’St” than with ‘’Saint”. The search
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was performed on 16 May 2020, and we included all years from 1985–2020 in each search. NIH-funded
projects have a record for each fiscal year of a project (e.g., a 5-year NIH R01 has five records). The
projects include international and national investigators and project locations. The search for WNV
resulted in 2803 records for a total of $1,493,811,562 in funding; CHIKV matched 960 records for
$477,117,414 in funding; and ZIKV matched 1332 records for $1,164,293,217 in funding (Figure 1). The
search for EEEV matched 310 records for a total of $165,906,376 in funding; SLEV matched 143 records
for $59,372,038 in funding; and LACV matched 126 records for $41,122,419 in funding (Figure 2). The
rise in NIH-funded projects for the invasive arboviruses rose quickly following their introduction into
the U.S., especially for ZIKV. The NIH-funding for endemic arboviruses was steadier over the 35 time
year period, especially for LACV.
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Figure 1. Total funding by the National Institutes of Health based on the National Institutes of Health
(NIH) Reporter search query of projects matching West Nile virus (WNV), chikungunya virus (CHIKV),
and Zika virus (ZIKV), from 1985 to 2020. Expenditures in 2020 are incomplete as search was conducted
on 16 May 2020. Graphed values were corrected for inflation by the Consumer Price Index referenced
to 2019 provided by the U.S. Bureau of Labor Statistics.

In response to WNV and ZIKV, the CDC supports detection and response capacity to local agencies
by providing states Epidemiology and Laboratory Capacity (ELC) cooperative agreements with all 50
states and US territories. For the first five years following the introduction of WNV into the U.S., the
CDC issued ELC funds which were reduced in 2004. A survey by the Council of State and Territorial
Epidemiologists in 2005 showed several enhancements to surveillance, laboratory, and control capacity
that were made possible as the result of ELC funding [34]. However, after yearly reductions in ELC
funds, a survey in 2013 revealed many of these programs had reduced or lost surveillance and response
measures [35]. Despite this lack of sustained funding and reduced infrastructure, WNV continues to
have periodic large epidemics [36]. The advent of CHIKV and ZIKV to the Americas caught many
U.S local, state, and federal agencies off guard with a lack of knowledge of, lack of surveillance of, or
inability to control Aedes (Stegomyia) mosquitoes. Once again, along with the NIH who spent over
$400 million in 2016 on ZIKV-related projects, the CDC administered $97 million in supplementary
Zika ELC stimulus funds to states to help programs re-bound and shift from a Culex-centric focus to
Aedes [37]. This pulse in funding helped improve the surveillance and control of Aedes mosquitoes,
although the fading of Zika virus in the national news and the reduction of these ELC funds [38] has
resulted in many programs again reducing their capacity.
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Figure 2. Total funding by the National Institutes of Health based on the NIH Reporter search query of
projects matching Eastern equine encephalitis virus (EEEV), St Louis encephalitis virus (SLEV), and La
Crosse encephalitis virus (LACV) from 1985 to 2020. Expenditures in 2020 are incomplete as search was
conducted on 16 May 2020. Graphed values were corrected for inflation by the Consumer Price Index
referenced to 2019 provided by the US Bureau of Labor Statistics.

Along with the pulse in funding and attention by media and the public, surges in peer-reviewed
publications occur following the emergences of arboviruses. To quantify these publications, we
performed a “Basic Search” of the Web of Science Core Collection for the key words of “West Nile
virus”, “chikungunya virus”, and “Zika virus”. As with the NIH RePORTER search, we included
“Eastern equine encephalitis virus”, “St Louis encephalitis virus”, and “La Crosse encephalitis virus”.
The search for St. Louis encephalitis virus returned more publications with “St” than with “Saint”. The
year range for the search was 1985 to 2020, and the search was conducted on 16 May 2020. The results
yielded 11,868 records for WNV; 5088 for CHIKV; 8074 for ZIKV; 634 for EEEV; 604 for SLEV; and 238 for
LACV (Figures 3 and 4). The yearly pattern in publications for these three arboviruses closely matches
the total funding by NIH, although publications reported on Web of Science include publications by
international authors funded by different international sponsors. Publications including the endemic
arboviruses as keyword searches have slowly increased over the last 35 years, but the scale of the
increase in publications for invasive arboviruses is much greater.
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Figure 3. Results of a Basic Search of the Web of Science Core Collection for West Nile virus (WNV),
chikungunya virus (CHIKV), and Zika virus (ZIKV), from 1985 to 2020. Publications in 2020 are
incomplete as search was conducted on 16 May 2020.
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Figure 4. Results of a Basic Search of the Web of Science Core Collection for eastern equine encephalitis
virus (EEEV), St. Louis encephalitis virus (SLEV), and La Crosse encephalitis virus (LACV) from 1985
to 2020. Publications in 2020 are incomplete as search was conducted on 16 May 2020.

4. Innovation of Mosquito Surveillance Tools

The evolution of mosquito trapping tools targeting Culex and Aedes mosquitoes has followed suit,
being driven by the emergence of these viruses, the resulting resources generated by federal agencies,
and consumer demand. To visualize trends in trap usage over time, we evaluated BioQuip Products
sales data in each main trap category between 2003 and 2019 (Figure 5). As the United States has
experienced emergences and threats of first Culex and now also Aedes-borne viruses, innovations to
traditional mosquito trapping tools targeting these vector groups have arisen, with the proportion
of sales in different categories fluctuating over time in response to arbovirus outbreak and funding
availability (Figure 1). The diversity of traps sold by BioQuip Products also increased substantially
from two categories in 2003 to nine categories by 2014 (Figure 3) as new innovations came to market.
Undoubtedly, the surge of Aedes-borne viruses in particular during this time period has influenced the
development and sales of novel traps targeting Ae. aegypti mosquitoes.
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Figure 5. Proportion of traps sold per year by BioQuip Products. Product numbers represented
included: Gravid traps (2800, 2800S), BG traps (2880, 2883), NJ light trap (2856), EVS traps (2801A,
2780, 2780NS1, 2780NS2), Centers for Disease Control and Prevention (CDC) traps (2848, 2770, 2836BQ,
2836BQX), resting traps (2799), Gravid Aedes Traps (2797), passive traps (2887, 2887P), large aspirators
(2888A, 2846). Inset: Proportion of trap types sold per year by BioQuip Products. Product numbers
represented included: Gravid traps (2800, 2800S), BG traps (2880, 2883), NJ light trap (2856, 2857, 2858),
EVS traps (2801A, 2780, 2780NS1, 2780NS2), CDC traps (2848, 2770, 2836BQ, 2836BQX), resting traps
(2799), Gravid Aedes Traps (2797), passive traps (2887, 2887P), and large aspirators (2888A, 2846).

4.1. Culex-Borne Virus Surveillance

The CDC light trap has become an industry standard for collection of mosquitoes for the purposes
of arbovirus surveillance. The similar EVS (Encephalitis Vector Survey) trap [39] is also routinely used
for arbovirus surveillance and operates on a similar principle as the CDC light trap using light and
carbon dioxide (CO2) as attractants. Between 2003 and 2010, trap sales were dominated by suction
traps using light and CO2 as attractants, and gravid traps, largely for Culex vectors of WNV and SLEV.
Due to the sustained threat of WNV year after year [36], traps targeting Culex vectors are expected to
remain a mainstay in the industry.

Several specific innovations have either improved the functionality of the standard light trap or
targeted different physiological cohorts of mosquitoes. In 2006, BioQuip released the first commercially
available light-emitting-diode (LED) CDC-style light trap with customizable colors (Figure 3). Bayonet
mounted LED chips were also available to replace the white incandescent lights in existing CDC style
light traps. The passive box trap offered an alternative to CDC light traps, by providing a CO2-baited
trap that was not reliant on a power source and could be used to sample arbovirus vectors in more
remote areas [40]. A collapsible passive trap was also developed to address portability issues [41]. A
photo switch option also added to light traps, allowing researchers the flexibility to set traps when
convenient and conserve battery power. Finally, the CDC resting trap was introduced in 2011 for
the purpose of collecting blood-engorged mosquitoes to determine vertebrate host utilization [42].
Passive and resting traps represent a smaller proportion of sales over the last several years, suggesting
their utility may be serving the research community as opposed to being integrated into large-scale
operational surveillance activities.
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4.2. Aedes-Borne Virus Surveillance

Surveillance for viruses transmitted by Ae. aegypti mosquitoes requires very different tools and
strategies than for those used for Culex-borne viruses. These urbanized, day-biting, container-breeding
mosquitoes are generally not attracted to the suction and gravid traps that are so efficient at catching
Culex mosquitoes [43]. The growing need for traps that effectively collected Aedes mosquitoes led to
the innovation of the BG Sentinel Mosquito Trap in 2006 (Biogents AG, Regensburg, Germany) [44],
among others. BG sentinel traps began selling at BioQuip in 2011, and sales comprised approximately
50% of the total traps sold by BioQuip in 2016 following the introduction of CHIKV and ZIKV to the
Americas (Figure 3). Similarly, gravid Aedes traps (GAT) [45,46] were introduced between 2013 and 2014.
Conceptually based on traditional gravid traps [47], these traps do not require electricity to function.
GAT sales quickly grew to approximately 30% of the traps sold by BioQuip in 2016 (Figure 5). The
InsectaZooka© and the Prokopak aspirator [48] are lightweight, portable field aspirators developed
as an alternative to backpack models. These devices facilitate the collection of resting and engorged
mosquitoes from indoor and outdoor resting sites.

5. Conclusions

The emergence of mosquito-borne viruses has occurred repeatedly in recent decades, and studies
predict that these emergences will continue. Much of our response to these events is reactionary,
triggered by the increase in attention, funding, publication, innovation, and preventive measures
for public health. The long-term impact or return on investment of outbreak spending is evidenced
by scientific advancements (publications) and innovation, but we advocate for a more sustainable,
economical, and effective approach by minimizing the oscillations of boom and bust in funding
and capacity for mosquito-borne viruses. Our goal should be to optimize the cost-effectiveness of
budgetary spending by adopting resource allocation for biosecurity threats that maximize benefits
while minimizing the total cost given anticipated expenditures incurred in the event of mosquito-borne
viral outbreaks [49,50].
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