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Abstract

Background

Canine Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and trans-

mitted by insect triatomine vectors known as kissing bugs. The agent can cause cardiac

damage and long-term heart disease and death in humans, dogs, and other mammals. In

laboratory settings, treatment of dogs with systemic insecticides has been shown to be

highly efficacious at killing triatomines that feed on treated dogs.

Method

We developed compartmental vector-host models of T. cruzi transmission between the tria-

tomine and dog population accounting for the impact of seasonality and triatomine migration

on disease transmission dynamics. We considered a single vector-host model without sea-

sonality, and model with seasonality, and a spatially coupled model. We used the models to

evaluate the effectiveness of the insecticide fluralaner with different durations of treatment

regimens for reducing T. cruzi infection in different transmission settings.

Results

In low and medium transmission settings, our model showed a marginal difference between

the 3-month and 6-month regimens for reducing T. cruzi infection among dogs. The differ-

ence increases in the presence of seasonality and triatomine migration from a sylvatic trans-

mission setting. In high transmission settings, the 3-month regimen was substantially more

effective in reducing T. cruzi infections in dogs than the other regimens. Our model showed

that increased migration rate reduces fluralaner effectiveness in all treatment regimens, but

the relative reduction in effectiveness is minimal during the first years of treatment. How-

ever, if an additional 10% or more of triatomines killed by dog treatment were eaten by dogs,
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treatment could increase T. cruzi infections in the dog population at least during the first

year of treatment.

Conclusion

Our analysis shows that treating all peridomestic dogs every three to six months for at least

five years could be an effective measure to reduce T. cruzi infections in dogs and triato-

mines in peridomestic transmission settings. However, further studies at the local scale are

needed to better understand the potential impact of routine use of fluralaner treatment on

increasing dogs’ consumption of dead triatomines.

Author summary

Chagas disease- caused by the protozoan parasite Trypanosoma cruzi and vectored by tria-

tomine insects- poses a serious threat to human and dog health, as infection may go unde-

tected and cause heart disease. Systemic insecticide treatment of dogs is one proposed

One Health intervention to reduce T. cruzi transmission for both dogs and humans, given

that dogs are parasite reservoirs. Fluralaner, a systemic insecticide commonly adminis-

tered to dogs to prevent ectoparasites such as fleas and ticks, induces mortality of triato-

mines in laboratory settings. We investigated the efficacy of different fluralaner treatment

regimens in three endemic peridomestic transmission environments (high, medium, and

low) for lowering triatomine density, T. cruzi infection prevalence, and incidence among

dogs using mathematical models. Our simulations suggest that fluralaner treatment is an

effective method of reducing T. cruzi transmission to dogs, and the ideal frequency to

treat dogs with fluralaner depends on the transmission environment. Given the interven-

tion may increase the abundance of dead vectors in the dog’s environment, empirical data

are needed on the duration of parasite viability within dead vectors and frequency of

canine consumption of dead vectors for a more comprehensive evaluation of the

intervention.

Introduction

Chagas disease is a neglected tropical disease that affects approximately 6 million people and is

endemic to 21 countries in the Americas [1]. Trypanosoma cruzi, the causative agent of Chagas

disease, can cause severe cardiac and gastrointestinal disease in humans and other animals

[2,3]. It is vectored by triatomine insects (‘kissing bugs’) and is primarily transmitted by

infected triatomine fecal material when introduced to a bite wound during or after feeding, or

when the infected triatomine or fecal material is consumed [2].

Trypanosoma cruzi transmission involves complex interactions between the parasite, multi-

ple host species, and sylvatic vector populations [4,5]. As generalist vectors, triatomines feed

on a broad range of domestic and wild mammals and other vertebrate species, each with vary-

ing roles in maintaining T. cruzi transmission cycles [5,6,7,8,9,10]. In domestic cycles of T.

cruzi transmission, triatomines colonize human habitations and feed primarily on humans

and domestic animals, while in the sylvatic cycle of transmission, triatomines live in nests or

burrows, feeding on diverse wildlife species. In the peridomestic environment- characterized

by man-made or natural structures near both human dwellings and natural habitats- T. cruzi

PLOS NEGLECTED TROPICAL DISEASES Using fluralaner treatment to control canine Chagas disease

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011084 January 24, 2023 2 / 24

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0011084


transmission is maintained by populations of triatomines that feed on species often associated

with such dwellings, like dogs [11].

The domestic transmission setting has been heavily studied in Latin America, where several

local and abundant triatomine species are considered domesticated and frequently colonize

homes [12,13,14]. In the southern United States, the triatomine species are considered primar-

ily sylvatic, with an increasing awareness of their impact in peridomestic settings [15,16,17].

In the peridomestic environment, dogs are key bloodmeal hosts for triatomines and serve

as competent hosts for T. cruzi transmission [18,19,20]. Throughout the southern United

States, domestic, service, hunting, and government working dog populations have a high prev-

alence and risk of infection with T. cruzi. Studies have shown that T. cruzi prevalence in kennel

or shelter environments across Texas, Oklahoma, and Louisiana range from 3.6%-70.1% of

dogs infected [19,21,22,23]. Dogs with Chagas disease can develop acute cardiac abnormalities

associated with long-term cardiac damage or death, or may remain asymptomatic for years

[24]. Prevention of disease is focused on reducing canine exposure to the vectors.

Insecticides play a key role in efforts to control triatomine populations and have been pri-

marily employed as residual sprays in domestic and peridomestic environments [14,25]. Given

the concern about insecticide resistance from widespread treatments of homes and the perido-

mestic environment, systemic insecticides (a.k.a. ectoparasiticides and xenointoxication),

which rely on the application of insecticides directly to domestic animals to target triatomines,

emerged as an alternative strategy to consider [26]. Multiple studies have now investigated sys-

temic insecticides as a method of using domestic hosts to control triatomine populations and

reduce the risk of human T. cruzi infection [27,28,29,30]. These insecticides, given or applied

to a dog, expose any triatomine that feeds on the dog to the insecticide. Bravecto (fluralaner),

an oral systemic insecticide treatment given to dogs, inhibits GABA-gated chloride channels

and L-glutamate-gated chloride channels in the nervous system of affected insects [31]. It

induces nearly 100% mortality in Triatoma infestans and Rhodnius prolixus- two key triato-

mine species in T. cruzi transmission- within a few days of feeding on treated blood and,

uniquely, continues killing triatomines up to 7 months after treatment [28,29,32,33]. Flurala-

ner has also been successfully deployed in the field, significantly reducing infestations and

abundance of T. infestans in the domestic transmission cycle [30]. Further, a prior mathemati-

cal modeling study based on the Ross-McDonald malaria model showed that annual treatment

of dogs with fluralaner may be impactful in reducing infection rates of dogs in high transmis-

sion settings, but may be detrimental in low transmission settings when dog consumption of

insects increases following xenointoxication [34]. Targeting dog populations with systemic

insecticides in a peridomestic transmission setting may provide a method of triatomine con-

trol in areas where dogs are encountering triatomines, which may lead to a reduction in the

risk of T. cruzi infection to dogs, thereby protecting canine health.

For decades, mathematical modeling has been utilized to improve our understanding of T.

cruzi transmission dynamics, often in domestic settings with an emphasis on protecting

human health [35,36,37,38,39,40,41,42]. Such efforts have identified reducing domestic vecto-

rial transmission as key to reducing the incidence of Chagas disease in humans [43,44]. Fur-

ther, housing animals- including dogs- in homes has been linked to an increased risk of T.

cruzi infection in humans [4,45,46,47,48,49,50].

Models investigating sylvatic transmission cycles have been developed to incorporate the

multiple sylvatic hosts available, advancing our understanding of interactions between hosts,

vectors, and T. cruzi and highlighting both vector-fecal and oral transmission pathways

[42,51,52,53,54,55,56,57]. In peridomestic settings where dogs are the main hosts, host-tar-

geted interventions may provide a valuable tool to reduce triatomine populations and canine

exposure to T. cruzi. Mathematical modeling can provide insight into the peridomestic cycle
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of T. cruzi- transmission and the potential population-level effects of host-targeted interven-

tions, specifically when dogs are the primary host.

In this study, we developed a series of compartmental models to evaluate transmission

dynamics between triatomines and dogs in the peridomestic environment, considering the

seasonality of triatomine vectors, varying prevalence of T. cruzi infections in dogs and triato-

mines, and the potential impact of triatomine migration between peridomestic and sylvatic

transmission settings. We then used our models to evaluate the effectiveness of different treat-

ment regimens of the systemic insecticide fluralaner for the control of reducing triatomine

populations and T. cruzi infections. Based on the findings in Rokhsar et al. [34], we also con-

sider the potential impact of increased consumption of triatomines and oral transmission

when fluralaner is routinely given to dogs.

Methods

Model structure

We developed three compartmental vector-host SI (Susceptible-Infected) models for the trans-

mission of T. cruzi between triatomines and dogs. The models are: (1) a baseline model that

does not account for the impact of seasonality on triatomine dynamics, (2) a seasonality model

that explicitly accounts for the impact of seasonality on triatomine dynamics, and (3) a spa-

tially coupled model accounting for the movement of triatomine between peridomestic and

sylvatic habitats. We used these models to evaluate the population-level effectiveness of differ-

ent dog systemic insecticide treatment regimens on T. cruzi prevalence in dogs and triatomine

populations in different T. cruzi transmission settings.

Single vector-host population model

Here, we consider a model with a single vector-host population for the transmission of T. cruzi
between triatomines and peridomestic dogs. Like most Chagas disease models

[35,43,45,46,51,58], here we ignore the impact of seasonality on triatomine dynamics by

assuming all model parameters to be constant over time. We used an age-structured model for

the triatomine population (Fig 1). The age structure includes egg stage, nymph, and adult

stage. We assume that eggs (E) are laid at a per-female reproduction rate λ, and hatch into

nymphs (Y) at the rate τ. We assume the surviving rate from egg to nymph to be density-

dependent with an environmental carrying capacity κ. Nymphs molt into adults at maturation

rate γy. We assume no vertical transmission of T. cruzi from adult triatomines to their off-

spring, which is supported by past studies [59,60]. In addition, we assume that nymphs remain

uninfected until they molt into full-grown adults with fully developed wings to be able to dis-

perse in search of blood meals. This assumption is predicated on the fact that in our model

triatomine can only get infected by feeding on infected dogs, and nymphs are unlikely to feed

on dogs.

In this transmission setting, we assume that dogs are the main/only competent host for T.

cruzi and that a small proportion of adult triatomines will never feed on dogs but instead will

feed on other incompetent hosts (which are not modeled explicitly). These triatomines will

remain uninfected with T. cruzi, and we denote them as Sb2. The remaining proportion of

adult triatomines, which feed on dogs at least once, is denoted using the subscript b1. Here, sus-

ceptible adult triatomines, Sb1, can become infected, Ib1, at a transmission rate βv. The popula-

tion density of triatomines feeding on dogs is equal to Nb1 = Sb1+Ib1. However, the total

population density of adult triatomines is equal to Nb = Sb1+Ib1+Sb2. For simplicity, we assume

the dog population, Nh, to be constant, where the birth rate equals the death rate. Each dog

could be in either mutually exclusive disease state: susceptible, Sh (not infected with T. cruzi
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and able to become infected) and infectious, Ih (infected with T. cruzi and able to transmit). T.

cruzi transmission from infected dogs to triatomines occurs at a transmission rate βh. We

assume that the transmission rate βh accounts for two contact-based infection processes: ster-

corarian (vector fecal contamination) and oral. Here, dogs can be infected with T. cruzi either

through the feces of infected triatomines or by oral consumption of infected triatomines. Nat-

ural mortality rates of dogs, adult triatomines, nymphs, and eggs are respectively denoted by

δd, δb, δy, and δe. The dynamics of T. cruzi transmission between triatomines and dogs are

described by a system of ordinary differential equations denoted as Model 1 (see Fig 1 for a

schematic description of the model).

Model 1

dE
dt
¼ lNb � tE � deE ð1aÞ

dY
dt
¼ tE 1 �

Y þ Nb

k

� �

� gyY � dyY ð1bÞ

dSb1

dt
¼ �gyY � bvSb1

Ih

Nh
� dbSb1 ð1cÞ

dIb1

dt
¼ bvSb1

Ih

Nh
� dbIb1 ð1dÞ

dSb2

dt
¼ ð1 � �ÞgyY � dbSb2 ð1eÞ

Fig 1. Single vector-host population model structure.

https://doi.org/10.1371/journal.pntd.0011084.g001
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dSh

dt
¼ ddNh � bhSh

Ib1

Nb1

� ddSh ð1fÞ

dIh
dt
¼ bhSh

Ib1

Nb1

� ddIh ð1gÞ

Model’s parameters are described in Table 1. All parameter values are obtained from pub-

lished literature with the exception of the proportion of the triatomines that would feed on

dogs (ϕ), and the carrying capacity (κ).

Because canine Chagas disease is endemic in many countries in the Americas including the

southern part of the United States, we reasonably assume that our system is at equilibrium. We

use � to demote state variables at equilibrium with Nb = Sb1
�+Sb2

�+Ib1
�. The carrying capacity

κ, is estimated at the steady state (equilibrium) as:

We first find the equilibrium value for egg and the nymph stage.

Egg stage equilibrium:

dE
dt
¼ lNb � tE � deE ¼ 0;

lNb ¼ Eðtþ deÞ;

E� ¼
lNb

ðtþ deÞ
:

Nymph stage at equilibrium:

dY
dt
¼ tE 1 �

Y þ Nb

k

� �

� gyY � dyY ¼ 0;

tE 1 �
Nb

k

� �

¼ Y gy þ dy

� �
þ
tE
k

� �

;

Table 1. Key model input parameters, values, and sources.

Parameter Symbol Value Source

Proportion of adult triatomines feeding at least once on dogs ϕ 0.95 [61]

Carrying capacity κ 37018.vec/km2 Estimated

Triatomine per-female egg production λ 475/yr [62,63,64]

Egg hatching rate τ 23.7/yr [65,66]

Nymph maturity rate γy 1.73/yr [66,67]

Egg mortality rate δe 0.36/yr [62]

Nymph mortality rate δy 1.46/yr [66,68]

Adult triatomine mortality rate δb 0.56/yr [51,68]

Triatomine population density Nb 31600.vec/km2 [51]

Probability of vector infection per bite on infectious dog ρ 0.3082 [69]

Dog population density Nh 1000.host/km2 Estimated from [70,71]

Dog mortality rate δd 0.1/yr [43]

https://doi.org/10.1371/journal.pntd.0011084.t001
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Y� ¼
tlNbðk � NbÞ

kðde þ tÞðgy þ dyÞ þ tlNb
;

Now, we sum the differential equations for adults triatomine and set the results into zero.

Thus,
dNb
dt ¼

dSb1

dt þ
dSb2

dt þ
dIb1

dt ¼ 0;

dNb

dt
¼ gyY

� � dbNb ¼ 0;

Nb ¼
gyY�

db
;

Nb ¼
gy

db

Nbltðk � NbÞ

kðde þ tÞðgy þ dyÞ þ ltNb

" #

;

k ¼
tlNbðdb þ gyNbÞ

tlgyNb � dbðde þ tÞðgy þ dyÞ

The parameters δe, δy, δb are the egg, nymph, and adult mortality rate, respectively. We

assumed ϕ to be equal to 0.95 and tested the robustness of our results for ϕ greater or equal to

0.9.

We have Sb1
� = Nb−Sb2

�−Ib1
� and defined disease prevalences at equilibrium as

Ib1
�

Nb
¼

ib�Nb
Nb
¼ yv and

I�h
Nh
¼

id�Nh
Nh
¼ yh, where ib, id are empirical estimates of T. cruzi infection preva-

lence in triatomines and dogs respectively. The proportion of Sb1 and Sb2 at equilibrium state

are also defined as sb1 ¼
Sb1
�

Nb
, and sb2 ¼

Sb2
�

Nb
. The steady state of Model 1 (setting the equilibrium

equations for Eqs 1D and 1G into zero) can be written as:

bvð1 � yv � sb2Þyh � dbyv ¼ 0; bhð1 � yhÞyv � ddyh ¼ 0:

We can now solve these equations for the transmission rates βh and βv as done in [51]. The

corresponding transmission rates are therefore computed as:

bv ¼
dbyv

ð1 � yv � sb2Þyh
and bh ¼

ddyh

ð1 � yhÞyv
:

We considered three transmission settings (high, medium, and low) and estimated the cor-

responding transmission rates for each setting (Table 2).

Table 2. Trypanosoma cruzi infection prevalence and transmission rates.

Description Variable High Medium Low

Dog prevalence id 0.30 0.15 0.08

Triatomine prevalence ib 0.56 0.25 0.13

Annual host transmission rate (1/year) βh 0.0745 0.0687 0.0651

Annual vector transmission rate (1/year) βv 2.5351 1.2941 1.0823

The values of dog and insect prevalence are informed from [18,72,73,74,75].

https://doi.org/10.1371/journal.pntd.0011084.t002
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Single vector-host population model with seasonality

Here, we extend our SI vector-host model (Model 1) to capture the impact of seasonality on

the triatomine life cycle and T. cruzi transmission dynamics. Specifically, we assume seasonal-

ity patterns of nymphal maturation rate and transmission rate (contact rate between triato-

mines and dogs driven by triatomine seasonal dispersal in search of blood meal [76]). We

denote this model as Model 2.

We assume that seasonality in nymphal maturation rate (nymphs molting into adults) fol-

lows a stepwise function with high activities during spring, lower activities during summer

and fall, and none during winter. We define the maturation rate as

gyðtÞ ¼ g
0

ygðt; εÞ with
Z 1

0

gðt; εÞdt ¼ 1:

where ε is the relative activity level of triatomines during summer and fall compared to spring

and set to be equal to 0.25 (we also consider ε = 0.5), and g0
y is the annual maturation rate in

the absence of seasonality (Model 1).

The contact rate between triatomines and dogs, h(t), was defined as a piecewise function

whose values were informed from empirical data of triatomine host biting over a one-year

period [76]. We defined the transmission rates as follow:

bvðtÞ ¼ bv
0hðtÞ and bhðtÞ ¼ bh

0hðtÞ

with
R 1

0
hðtÞ ¼ 1, where βv

0 and βh
0 are annual transmission rates in the absence of seasonality

(Model 1).

Spatially coupled vector-host model with seasonality

Here, we consider a spatially coupled vector-host model for the spread of T. cruzi between perido-

mestic and sylvatic transmission cycles. In the peridomestic setting, dogs are assumed to be the

main/only competent reservoir host for T. cruzi transmission. In the sylvatic setting, we assume

diverse wildlife reservoir species competent for T. cruzi transmission [e.g. raccoon (Procyon lotor),
opossum (Didelphis virginiana), woodrat (Neotoma spp.)] and all adult triatomines are likely to

feed on at least one T. cruzi-competent host. For simplicity, we aggregated the wildlife T. cruzi-
competent species into a single host population. In both settings, we assume that triatomines have

the same seasonality behavior described in Model 2. So, we have a vector-host SI model for T.

cruzi transmission in the peridomestic and sylvatic transmission settings. We assume the host

populations to be constant in each setting and only adult triatomines move between the two set-

tings, with η(t) being the movement rate of adult bugs from peridomestic to sylvatic habitat and ξ
(t) being the movement rate from sylvatic to peridomestic habitat. The movement rates are

defined as η(t) = η0m(t) and ξ(t) = ξ0(t)m(t) with
R 1

0
mðtÞdt ¼ 1, where η0 and ξ0 are the average

annual movement rates and m(t) is the seasonal behavior function. m(t) was designed as a piece-

wise function whose values were informed from empirical data on adult triatomine dispersal over

time [77]. The system of equations of this model (Model 3) is provided in S1 Text.

Dog treatment

Fluralaner, an oral systemic insecticide, is used in dogs to prevent tick and flea infestations

[32,78,79]. In this study, we evaluated the effectiveness of fluralaner treatment against T. cruzi
infection in dogs and triatomines. We focused on fluralaner as the systemic insecticide because

of the availability of empirical efficacy data on its ability to kill triatomines. These data,

obtained from a systematic laboratory study [32], provide estimates of the monthly efficacy of
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fluralaner on killing triatomines that fed on dogs during the first twelve months following

dogs’ treatment, as well as the mortality rate of those triatomines (duration from feeding to

death at an hourly rate) [32]. The results from this study were used to inform treatment effi-

cacy (Tr) and treatment-induced mortality rate (μd) in our model (Fig 2). Although the refer-

ence laboratory study used Triatoma infestans- a species native to South America- we recently

evaluated the ability of fluralaner-treated dogs to kill Triatoma gerstaeckeri nymphs that were

the progeny of wild-caught adults from South Texas, with similar results [80].

To compute the number of susceptible adult bugs that have fed on treated dogs, we derived

contact rate between adult bugs and dogs as θ = βv/ρ where ρ is the probability of adult bug

infection per instance fed on infected dog and βv is the transmission rate from infected dogs to

adult triatomine.

Treatment strategies

We consider four fluralaner treatment regimens: 3-month (with dogs treated once every three

months), 6-month, 9-month, and 12-month. For each regimen, treatment efficacy and

induced mortality rate were informed by empirical data [32]. We used our models to evaluate

the effectiveness of each regimen for reducing T. cruzi infection prevalence and incidence

among dogs and adult triatomines, as well as adult triatomine density in three transmission

settings (high, medium, and low: Table 2), with and without seasonal triatomine transmission

behavior and spatial coupling. In the spatially coupled model, we assume that only peridomes-

tic dogs received treatment. We compare the predicted effectiveness of the four regimens to

identify the most effective regimen in each setting. Our effectiveness outcomes are: the reduc-

tion of T. cruzi prevalence in dogs, reduction of adult triatomine density, reduction of T. cruzi
incidence on triatomines and dogs, and cumulative dog and triatomine infections averted.

Impact of increased consumption of dead triatomines

Dog treatment with fluralaner will likely result in substantial increase of triatomine mortality,

but the degree to which this will result in increased consumption by dogs of dead insects is not

Fig 2. Model structure with treatment. TSb1 and TIb1 is the density of susceptible and infected adult bugs that feed on

fluralaner-treated dogs and will die from fluralaner intoxication.

https://doi.org/10.1371/journal.pntd.0011084.g002
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known. Rokhsar et al [34] assumed that dogs consumed 80% of bugs killed by treatment and

that consumption happened immediately upon death. However, given parasites may not

remain viable in dead insects especially those that are exposed to the hot and dry ambient con-

ditions of Chagas endemic regions, and given no data to suggest a high level of insectivory by

dogs, we primarily conduct our analysis assuming that dog treatment does not result in a sig-

nificant increase of triatomine consumption by dogs. We further extend our analysis by inves-

tigating the potential impact of increased consumption of dead bugs on the effectiveness of

treatment regimens for reducing T. cruzi infection prevalence in dogs. We assume that

infected bugs can remain infectious on average two days after death. The probability of oral

infection per infected bug consumed is 0.177 (17.7%) [51].

Results

Base model

With no treatment strategies added to our model, the prevalence of T. cruzi in triatomines ran-

ged from 56.0%-13.0%, and infection prevalence in dogs ranged from 30%-8% in the high to

low transmission settings, respectively (Table 2). We computed the corresponding annual

transmission rates for triatomines and dogs in each transmission setting (Table 2). We used

our model to evaluate the effectiveness of systemic insecticide treatment of dogs with flurala-

ner for the control of T. cruzi transmission. Additionally, we consider the effects of increased

dog consumption of triatomines, thus an increased oral transmission rate, when dogs are

given fluralaner.

Single vector-host model without seasonality

To evaluate the effectiveness of the treatment regimens, we first use a standard vector-host

model for T. cruzi transmission between dogs and triatomines that does not account for the

impact of seasonality on triatomine activity. In all transmission settings, we observed a prompt

and substantial decline in vector population density, vector T. cruzi prevalence, and dog T.

cruzi incidence following the initiation of treatment under all regimens (Figs 3, A, and B in S1

Text). Results for the high transmission setting are shown in Fig 3, and those of low and

medium transmission settings are shown in Figs A and B in S1 Text, respectively. For example,

after 10 years of treatment in a high transmission setting, triatomine population density was

reduced on average by 80.4%, 75.8%, 74.4% and 66.4% under the 3-month, 6-month,

9-month, and 12-month treatment regimen, respectively (Fig 3A), whereas triatomine T. cruzi
prevalence and dog T. cruzi incidence were reduced on average by more than 98% and 96%,

respectively (Fig 3). The effectiveness of treatment regimens for reducing dog infection was

shown to increase with transmission intensity; with high transmission setting having the high-

est reduction and low transmission having the lowest reduction (Fig 4 and Table A in S1 Text).

For example, after five years of treatment, T. cruzi prevalence among dogs was reduced by

37.7%, 37.5%, 37.1%, and 35.7% under the 3-month, 6-month, 9-month, and 12-month treat-

ment regimen, respectively, and by 63.1%, 62.0%, 61.4% and 59.4% after 10 years (Table A in

S1 Text).

To compare the effectiveness of the treatment regimens, we computed the cumulative T.

cruzi infections averted among dogs and triatomines under 3-month, 6-month, and 9-month

regimens relative to the 12-month regimen (Fig 4). In all transmission settings, we showed a

marginal difference between the relative effectiveness of the 3-month and 6-month regimens

and the 9-month regimen is more effective than 12-month (Fig 4).
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Single vector-host model with seasonality

Similarly, to the no seasonality model, in the model that considers seasonality we observed a

rapid reduction in vector population density, T. cruzi prevalence, and dog T. cruzi incidence in

all transmission settings (Figs 5, C, and D in S1 Text). Results for the high transmission setting

are shown in Fig 5, and those of low and medium transmission settings are shown in Figs C

and D in S1 Text, respectively. For example, after 10 years of treatment in the high transmis-

sion setting, triatomine population density was reduced on average by 80.4%, 79.8%, 78.3%,

and 74.1% under the 3-month, 6-month, 9-month, and 12-month treatment regimens, respec-

tively (Fig 5A), whereas triatomine T. cruzi prevalence and dog T. cruzi incidence were

reduced on average by more than 99% and 97%, respectively (Fig 5). Under the 3-month,

6-month, 9-month, and 12-month treatment regimen, T. cruzi prevalence among dogs was

reduced by 36.2%, 35.7%, 35.0%, and 34.7%, respectively, after five years of repeated treatment,

and by 61.1%, 60.5%, 59.6%, and 59.1% after ten years of repeated treatment (Table A in S1

Text). In comparison to the 12-month regimen, relative cumulative T. cruzi infections averted

over the first 20 years of treatment are 15, 11, and 4 per 1000 dogs and 459, 326, and 157 infec-

tions per 1000 bugs under the 3-month, 6-month, and 9-month treatment regimens, respec-

tively (Fig 6). In low and medium transmission settings, the 9-month and 12-month treatment

Fig 3. Effectiveness of systemic insecticide treatment of dogs with fluralaner for the control of canine Chagas in a high

transmission setting with 3-month, 6-month, 9-month, and 12-month treatment regimens using Model 1. (A) Reduction of

total population density (blue) and T. cruzi infections in triatomines (red), (B) Reduction of T. cruzi infection prevalence (red)

and incidence in dogs (blue). Effectiveness is evaluated using the single vector-host model without seasonality.

https://doi.org/10.1371/journal.pntd.0011084.g003
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regimens were shown to be equally effective, and minimal differences were observed between

the 3-month and 6-month regimens (Fig 6). Though our analysis was conducted for ε, the rel-

ative activity level of triatomines during summer and fall compared to spring, equals to 0.25,

similar results were obtained for ε = 0.5 (Fig E in S1 Text). The effectiveness of treatment regi-

mens for reducing dog infection was shown to increase with transmission intensity; with high

transmission setting having the highest reduction and low transmission having the lowest

reduction (Fig 6 and Table A in S1 Text)

Spatially coupled vector-host model

In addition to the single vector-host model, we also consider a spatially coupled vector-host

model with triatomines migrating between peridomestic and sylvatic transmission cycle set-

tings. For simplicity, we assumed that a fixed proportion of triatomines in each setting migrate

to the other setting annually (migration rate). Similar to the single population model, we

observed a rapid decline in vector population density, vector T. cruzi prevalence, and dog T.

cruzi incidence in all transmission settings (Figs 7, F, and G in S1 Text). Results for the high

transmission setting are shown in Fig 7, and those of low and medium transmission settings

are shown in Figs F and G in S1 Text, respectively. For instance, after 10 years of treatment in

the high transmission setting, bug’s population density was reduced on average by 79.7%, 79.7%,

77.2%, and 72.4% under the 3-month, 6-month, 9-month, and 12-month treatment regimens,

respectively (Fig 7A). However, contrary to the single vector-host model, the spatially coupled

model showed a sustained prevalence of T. cruzi among triatomines as high as 5% of the

Fig 4. Relative effectiveness of dog treatment regimen for reducing T. cruzi infections among dogs and triatomines compared to a 12-month

treatment regimen using Model 1. Effectiveness is computed using the single host-vector model without seasonality. (A) Cumulative additional dog

infections averted under the 3-month, 6-month, and 9-month regimen relative to the 12-month regimen in the low, medium, and high transmission

settings. (B) Cumulative additional triatomine infections averted under the 3-month, 6-month, and 9-month regimen relative to the 12-month

regimen in the low, medium, and high transmission settings.

https://doi.org/10.1371/journal.pntd.0011084.g004
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prevalence during the pretreatment period, and dog T. cruzi incidence was reduced by 90%

(Fig 7B). Under the 3-month, 6-month, 9-month, and 12-month treatment regimen, T.

cruzi prevalence among dogs was reduced by 33.2%, 32.7%, 32.1%, and 31.6%, respectively,

after five years of repeated treatment, and by 55.9%, 55.3%, 54.5%, and 53.8% after ten years

of repeated treatment (Table A in S1 Text). In high transmission settings, we showed that

the 3-month treatment regimen was shown to be more effective in reducing T. cruzi infec-

tions in the peridomestic transmission cycle (both dogs and triatomines) than the other

three regimens (Fig 8). However, in a low transmission setting, the difference between the

3-month and 6-month regimens was marginal (Fig 8). The effectiveness of treatment regi-

mens for reducing dog infection was shown to increase with transmission intensity; with

high transmission setting having the highest reduction and low transmission having the

lowest reduction (Fig 8 and Table A in S1 Text).

Finally, we evaluate the impact of triatomine migration on the effectiveness of dog treat-

ment regimens for reducing T. cruzi infection prevalence in dogs (Fig 9). We show that

increased migration rate reduces the effectiveness of fluralaner for all treatment regimens, but

the relative reduction of effectiveness is marginal during the first years of treatment (Fig 9).

Impact of increased consumption of dead triatomines

We show that if increased contacts between dogs and dead triatomines, killed from fluralaner

treatment, result in an increased oral consumption of dead triatomines by dogs beyond the

baseline number of bugs eaten during pre-treatment period, this could reduce the effectiveness

of fluralaner treatment for reducing T. cruzi infection prevalence in dogs and even potentially

Fig 5. Effectiveness of systemic insecticide treatment of dogs with fluralaner for the control of canine Chagas in a high transmission setting with

3-month, 6-month, 9-month, and 12-month treatment regimens using Model 2. (A) Reduction of total population density (blue) and T. cruzi infections in

triatomines (red), (B) Reduction of T. cruzi infection prevalence (red) and incidence in dogs (blue). Effectiveness is evaluated using the single vector-host

model with seasonality.

https://doi.org/10.1371/journal.pntd.0011084.g005
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increased T. cruzi infection prevalence. This impact varies with the additional proportion of

triatomines eaten by dogs, and the frequency of fluralaner treatment (Fig 10). For example, we

show that if 10% of killed triatomines were eaten by dogs, it would result in a small increase of

T. cruzi infection prevalence in dogs during the first year of treatment, followed by a quick and

consistent decline of prevalence below pre-treatment level (Fig 10). If 30% of killed triatomines

were eaten by dogs, it would result in a substantial increase of T. cruzi infection prevalence in

dogs during the first year of treatment, and prevalence remain above pre-treatment level for

five to 20 years following treatment initiation depending on the frequency of treatment (Fig

10). However, T. cruzi infection prevalence in triatomines is substantially reduced below its

pre-treatment level (Fig H in S1 Text). Similar results were observed for all transmission set-

tings, with and without seasonal effects (results not shown here). In all scenarios, the increase

in T. cruzi infection prevalence in dogs occurred during the first year of treatment.

Discussion

Using compartmental models, we evaluated the population-level impacts of fluralaner treat-

ment on triatomines, and T. cruzi infection in dogs and triatomines in a peridomestic environ-

ment. Across all transmission settings and treatment regimens, fluralaner intervention reduces

the triatomine population density. High treatment frequency is always more effective in reduc-

ing T. cruzi infection prevalence in the dog population. In low transmission settings, this

Fig 6. Relative effectiveness of dog treatment regimen for reducing T. cruzi infections among dogs and triatomines compared to a 12-month

treatment regimen using Model 2. Effectiveness is computed using the single host-vector model with seasonality. (A) Cumulative additional dog

infections averted under the 3-month, 6-month, and 9-month regimen relative to the 12-month regimen in the low, medium, and high transmission

settings. (B) Cumulative additional triatomine infections averted under the 3-month, 6-month, and 9-month regimen relative to the 12-month regimen in

the low, medium, and high transmission settings.

https://doi.org/10.1371/journal.pntd.0011084.g006
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difference may be negligible, indicating that less frequent treatment in these settings may be

sufficient to reduce T. cruzi infections in dogs and triatomines (Figs A, C, and F in S1 Text).

These results show fluralaner treatment can reduce triatomine populations and T. cruzi infec-

tion in peridomestic environments and reduce the risk of Chagas disease in dogs housed in

peridomestic environments. These results agree with those of a recent placebo-controlled

study on the effect of fluralaner on the control of triatomines T. cruzi infection [81]. However,

similar to Rokhsar at al. [34], we show that if increased triatomine mortality from dogs’ treat-

ment resulted in a significant increase in dog consumption of dead triatomines relative to the

pre-treatment era (e.g. more than 10% of killed triatomines are eaten by dogs in surplus of the

number of bugs generally eaten by dogs during the pre-treatment era), fluralaner treatment

may have a counterproductive effect, resulting in an increased prevalence of T. cruzi infections

in dogs at least during the first years of treatment (Fig 10).

In previous studies, dogs that were housed with triatomines in a closed environment con-

sumed 12–27% of the live triatomines present, even without fluralaner treatment [82,83].

Thus, in a peridomestic setting, the oral transmission route may be an important route of

infection for dogs, and if fluralaner increases the availability of dead and infected triatomines

around dogs, the oral route may be even more important as a driver of canine T. cruzi trans-

mission. However, since insects are neither a significant portion of a dog’s diet nor are dogs’

insectivores, we don’t anticipate the increased mortality of triatomines would result in a sub-

stantial increase in consumption of triatomines by dogs. Moreover, triatomines’ death by

xenointoxication may occur at least 24 hours after feeding [32], which allows triatomines

enough time to return to their refuge before dying rather than dying instantaneously after bit-

ing treated dogs. Therefore, fluralaner treatment of dogs may not necessarily increase dog con-

sumption of triatomines compared to the number of bugs eaten during the pre-treatment

Fig 7. Effectiveness of systemic insecticide treatment of dogs with fluralaner for the control of canine Chagas in a high transmission setting with

3-month, 6-month, 9-month, and 12-month treatment regimens using Model 3. (A) Reduction of total population density (blue) and T. cruzi infections in

triatomines (red), (B) Reduction of T. cruzi infection prevalence (red) and incidence in dogs (blue). Effectiveness is evaluated using the spatially coupled model.

https://doi.org/10.1371/journal.pntd.0011084.g007
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period. To provide a more accurate estimate of the potential impact of systemic insecticide use

on T. cruzi infection in dogs, future studies should provide a better understanding of dogs’ bug

eating behavior, the impact of systemic insecticide use on contact between dogs and death tria-

tomines, and the impact of increase triatomine mortality on dogs’ triatomine eating behavior.

Fig 8. Relative effectiveness of dog treatment regimen for reducing T. cruzi infections among dogs and triatomines compared to a 12-month

treatment regimen using Model 3. Effectiveness is computed using the spatially coupled model. (A) Cumulative additional dog infections averted under

the 3-month, 6-month, and 9-month regimen relative to the 12-month regimen in the low, medium, and high transmission settings. (B) Cumulative

additional triatomine infections averted under the 3-month, 6-month, and 9-month regimen relative to the 12-month regimen in the low, medium, and

high transmission settings.

https://doi.org/10.1371/journal.pntd.0011084.g008

Fig 9. Impact of triatomine migration rate between sylvatic and peridomestic communities on the effectiveness of

fluralaner treatment regimens for reducing dog T. cruzi prevalence.

https://doi.org/10.1371/journal.pntd.0011084.g009
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Future studies should also investigate triatomine T. cruzi infectivity and duration of infection

after death.

The degree to which these changes are observed in our models varies based on the regimen

of treatment, transmission settings, impact of seasonality of triatomine population dynamics,

and triatomine migration rate. In the presence of seasonality and high triatomine migration

rate between peridomestic and sylvatic cycles, treating dogs more frequently becomes more

important in higher transmission areas. In low and medium transmission areas, 3-month, and

6-month treatment regimens were shown to be highly or equally effective in reducing T. cruzi
infection incidence among dogs. In the presence of triatomine migration between peridomes-

tic and sylvatic settings, the difference in effectiveness between the 3-month and 6-month regi-

mens was more pronounced. As triatomine population and T. cruzi infections in the

peridomestic setting are replenished through migration, more frequent dog treatment

becomes more effective for disease control, especially in medium and high transmission set-

tings (Fig 9). Thus, in low-transmission settings, treating every 6 months may be sufficient to

control T. cruzi infections in dogs and triatomines, which could be a cost-saving measure.

Seasonality introduces oscillations into triatomine population sizes, leading to changes

throughout the year in triatomine movement, interactions with dogs, and risk of infection

[36]. By ignoring seasonality, models are likely to overestimate T. cruzi transmission risk dur-

ing triatomine low activity season and underestimate the risk during high activity season. This

is likely to impact the effectiveness of low frequency treatment, such as 9-month and

12-month treatment regimens, especially if treatment is not administered at the start of the

triatomine high activity season (early Spring). Specifically, for the 9-month treatment regimen,

which may or may not result in treatment being given just prior to the peak triatomine season,

seasonality has the potential to decrease the efficacy of treatment (Fig 6).

As a neglected tropical disease, there is limited and sparse spatio-temporal data on the

spread of Chagas disease, especially in the peridomestic and sylvatic transmission cycles mod-

eled here. This substantially limits the available parameter values or the ability to estimate

them through model fitting to data. For example, the impact of seasonality on the triatomine

Fig 10. Impact of increased consumption of dead triatomines by dogs on the effectiveness of fluralaner treatment

regimens for reducing dog T. cruzi prevalence. We consider four scenarios: 1) no increased consumption of dead bugs, 2)

10% of bugs killed by fluralaner treatment are eaten by dogs, and 3) 30% of bugs killed by fluralaner treatment are eaten by

dogs, and 4) 50% of bugs killed by fluralaner treatment are eaten by dogs.

https://doi.org/10.1371/journal.pntd.0011084.g010
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life cycle as well as their migration rates between sylvatic and peridomestic environments have

been shown to be important factors to disease transmission, but are not well-characterized. To

address this limitation, we used parameter values widely used in the Chagas disease modeling

literature as well as available data on monthly variation of triatomine host biting [76] and dis-

persal [77] to inform the functional form of seasonality of contact rate between triatomines

and dogs and triatomine migration between sylvatic and peridomestic transmission settings.

We also conducted sensitivity analyses on our migration and transmission rates. We assume

our model is in an endemic setting and is at equilibrium; however, our parameter estimates

are calibrated to single data points, which may not accurately reflect underlying transmission

dynamics. While this is a common technique in modeling studies, it does not consider that

prevalence values change over time, even in endemic settings. Future studies characterizing

time series data can be used to fit the model and better capture underlying transmission

dynamics and more accurate estimates of epidemiological parameters. We assume dogs live on

average 10 years, without taking into consideration disease-induced death or other dog age-

related factors. Future work should consider an age-structured model for dogs and the impact

of Chagas disease on dog mortality. In our models, we only assess fluralaner as an intervention.

Future modeling approaches could investigate the addition of other recommended integrated

pest management techniques, such as removing woody debris and harborage for wild reservoir

mammals, turning off exterior lights that attract dispersing adult triatomines, and improving

kennels and houses to reduce triatomine entrance and colonization, which may further reduce

T. cruzi transmission [7]. However, in our experience working at several large dog’s kennels in

south Texas where various integrated triatomine management techniques are practiced, canine

incidence was high across multiple kennels [23].

Our study suggests that all dogs, including peridomestic dogs, will have to be treated every

three to six months for at least five years to control the spread of Chagas disease in endemic

communities. In the southern United States, where triatomines and canine Chagas disease are

endemic, such control strategies are feasible as peridomestic dogs are mostly kennels and

working dogs. However, in Latin America, peridomestic dogs in Chagas disease highly

endemic communities are mostly stray dogs. In these settings treating all peridomestic dogs

every three to six months for at least five years may be extremely challenging and would likely

require significant public health and financial resources. Future studies should investigate the

feasibility, cost-effectiveness, and budget impact analyses of these control strategies in different

chagas endemic communities in Latin America.

Our models offer valuable insight into transmission dynamics in the T. cruzi peridomestic

transmission cycle and test the outcomes of implementation of xenointoxication-based control

in this setting. We show that canine and triatomine T. cruzi infections may be substantially

averted with the routine use of systemic insecticides. In low and medium transmission envi-

ronments, less frequent treatment may be sufficient to reduce T. cruzi in dogs and triatomines

when compared to high transmission environments. However, the use of systemic insecticides

may potentially increase canine T. cruzi infections if increased triatomine mortality results in a

substantial increase in dog’s oral consumption of dead triatomines. For this reason, it is para-

mount to better understand dog’s consumption behavior of dead triatomines in the presence

and absence of systemic insecticide use before recommending large-scale and routine use of

fluralaner in peridomestic environments.
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36. Castañera MB, Aparicio JP, Gürtler RE. A stage-structured stochastic model of the population dynam-

ics of Triatoma infestans, the main vector of Chagas disease. Ecological Modelling. 2003; 162: 33–53.

https://doi.org/10.1016/s0304-3800(02)00388-5

37. Fabrizio MC, Schweigmann NJ, Bartoloni NJ. Modelling inter-human transmission dynamics of Chagas

disease: analysis and application. Parasitology. 2014; 141: 837–848. https://doi.org/10.1017/

S0031182013002199 PMID: 24533945

38. Steindorf V, Maidana NA. Modeling the Spatial Spread of Chagas Disease. Bulletin of Mathematical

Biology. 2019; 81: 1687–1730. https://doi.org/10.1007/s11538-019-00581-5 PMID: 30805855

PLOS NEGLECTED TROPICAL DISEASES Using fluralaner treatment to control canine Chagas disease

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011084 January 24, 2023 21 / 24

https://doi.org/10.1371/journal.pntd.0005298
https://doi.org/10.1371/journal.pntd.0005298
http://www.ncbi.nlm.nih.gov/pubmed/28095511
https://doi.org/10.1371/journal.pntd.0009935
https://doi.org/10.1371/journal.pntd.0009935
http://www.ncbi.nlm.nih.gov/pubmed/34758049
https://doi.org/10.1016/j.cvsm.2009.06.004
https://doi.org/10.1016/j.cvsm.2009.06.004
http://www.ncbi.nlm.nih.gov/pubmed/19932362
https://doi.org/10.1093/jmedent/42.4.571
https://doi.org/10.1093/jmedent/42.4.571
http://www.ncbi.nlm.nih.gov/pubmed/16119545
https://doi.org/10.1089/vbz.2018.2325
http://www.ncbi.nlm.nih.gov/pubmed/30102585
https://doi.org/10.1016/j.vetpar.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/30981313
https://doi.org/10.1186/s13071-017-2278-2
https://doi.org/10.1186/s13071-017-2278-2
http://www.ncbi.nlm.nih.gov/pubmed/28724448
https://doi.org/10.1111/mve.12561
http://www.ncbi.nlm.nih.gov/pubmed/34866216
https://doi.org/10.1016/j.ibmb.2013.11.009
https://doi.org/10.1016/j.ibmb.2013.11.009
http://www.ncbi.nlm.nih.gov/pubmed/24365472
https://doi.org/10.1186/s13071-021-04978-x
http://www.ncbi.nlm.nih.gov/pubmed/34488865
https://doi.org/10.1016/j.parint.2021.102508
http://www.ncbi.nlm.nih.gov/pubmed/34781015
https://doi.org/10.1016/bs.apar.2014.12.004
https://doi.org/10.1016/bs.apar.2014.12.004
http://www.ncbi.nlm.nih.gov/pubmed/25765195
https://doi.org/10.1016/s0304-3800%2802%2900388-5
https://doi.org/10.1017/S0031182013002199
https://doi.org/10.1017/S0031182013002199
http://www.ncbi.nlm.nih.gov/pubmed/24533945
https://doi.org/10.1007/s11538-019-00581-5
http://www.ncbi.nlm.nih.gov/pubmed/30805855
https://doi.org/10.1371/journal.pntd.0011084
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