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Abstract 

Background  Chagas disease remains a persistent vector-borne neglected tropical disease throughout the Americas 
and threatens both human and animal health. Diverse control methods have been used to target triatomine vector 
populations, with household insecticides being the most common. As an alternative to environmental sprays, host-
targeted systemic insecticides (or endectocides) allow for application of chemicals to vertebrate hosts, resulting in 
toxic blood meals for arthropods (xenointoxication). In this study, we evaluated three systemic insecticide products 
for their ability to kill triatomines.

Methods   Chickens were fed the insecticides orally, following which triatomines were allowed to feed on the treated 
chickens. The insecticide products tested included: Safe-Guard® Aquasol (fenbendazole), Ivomec® Pour-On (ivermec-
tin) and Bravecto® (fluralaner). Triatoma gerstaeckeri nymphs were allowed to feed on insecticide-live birds at 0, 3, 7, 
14, 28 and 56 days post-treatment. The survival and feeding status of the T. gerstaeckeri insects were recorded and 
analyzed using Kaplan–Meier curves and logistic regression.

Results  Feeding on fluralaner-treated chickens resulted 50–100% mortality in T. gerstaeckeri over the first 14 days 
post-treatment but not later; in contrast, all insects that fed on fenbendazole- and ivermectin-treated chickens 
survived. Liquid chromatography tandem mass spectrometry (LC-QQQ) analysis, used to detect the concentration of 
fluralaner and fenbendazole in chicken plasma, revealed the presence of fluralaner in plasma at 3, 7, and 14 days post-
treatment but not later, with the highest concentrations found at 3 and 7 days post-treatment. However, fenbenda-
zole concentration was below the limit of detection at all time points.

Conclusions  Xenointoxication using fluralaner in poultry is a potential new tool for integrated vector control to 
reduce risk of Chagas disease.
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Background
Chagas disease, caused by the flagellate protozoan para-
site Trypanosoma cruzi, has one of the largest human 
disease burdens of all vector-borne diseases in the Amer-
icas, resulting in an estimated 6,469,283 cases in 2019 
[1]. The predominant mode of transmission of T. cruzi is 
stercorarian involving triatomine insects (subfamily Tri-
atominae, Hemiptera: Reduviidae), in which the infec-
tious stages of the parasite are excreted with the insect 
feces and enter the vertebrate through the biting wound 
or mucosa [2, 3]. Some animals may also ingest infected 
bugs, leading to orally-acquired infection [4, 5]. Both 
T. cruzi and triatomines have broad host ranges, and T. 
cruzi infections have been recognized in many species 
of mammals, including domestic dogs and cats as well as 
several wildlife species [6–9].

The primary method to reduce Chagas disease is by 
reducing human contact with infected triatomines, 
including vector control, household improvements and 
environmental management [10–12]. In highly endemic 
regions of the Americas, local ministries of health have 
relied on the indoor application of residual pyrethroid 
insecticide to decrease domestic triatomine populations 
[13]. However, triatomines have demonstrated a capac-
ity for recolonization from sylvatic refugia following the 
cessation of insecticide treatments [14, 15]; in addition, 
resistance to pyrethroid insecticides [16] has resulted in 
control failures [17].

Many species of triatomine bugs (triatomines) play 
a role in human Chagas disease transmission, with 
the most notable being Rhodnius prolixus, Triatoma 
infestans, and Triatoma dimidiata throughout central 
and South America, which are commonly found colo-
nizing homes [18]. In the USA, 11 different species of 
triatomines occur across the 28 southern states. Seven 
triatomine species found in Texas, with T. gerstaeckeri 
being the most commonly encountered by humans [19]. 
Triatoma gerstaeckeri can be found in both sylvatic and 
domestic settings in the US states of Texas and New 
Mexico and in northern Mexico [20], often in association 
with rodent and armadillo nests, corrals, stables, chicken 
coops and occasionally human dwellings [19, 21]. Stud-
ies estimate up to 55% of adult T. gerstaeckeri are infected 
with T. cruzi [21].

Several vertebrate species play a role in T. cruzi trans-
mission, either directly as reservoirs or indirectly by 
providing triatomine blood meals to sustain vector pop-
ulations. Dogs, cats and chickens are all common blood 
meal hosts of triatomines in the domicile and peridomi-
cile context and may bring vectors into close contact with 
humans [23]. In particular, chickens have been found to 
be positively associated with triatomine abundance [24]. 
While chickens are not competent hosts for T. cruzi 

[25], they are capable of sustaining vector populations 
[24]. Chickens are abundant throughout regions of Latin 
America where Chagas disease is endemic. Smallholder 
’family’ poultry production is a major source of animal 
protein throughout Central America, and chickens are 
the most common domestic fowl found throughout these 
areas [26, 27].

Treating highly utilized vertebrates with systemic 
insecticides, resulting in toxic blood meals for tri-
atomines—also called xenointoxication—may provide a 
solution to reducing Chagas disease in human and ani-
mal populations while minimizing non-target effects of 
insecticide use [28]. Recent studies have shown success in 
killing triatomines with host-targeted insecticides in dogs 
using various delivery methods and formulations, includ-
ing deltamethrin-treated collars, topical solutions and 
oral systemic insecticides [29–31]. Several of the meth-
ods using the active ingredient fluralaner have shown up 
to 100% mortality of South American triatomine vectors 
that fed on treated hosts [32, 33]. Ivermectin-containing 
blood meals from dogs have been shown to be lethal to 
triatomines, with the most effect within 3  days of dog 
treatment [34]. However, investigations of xenointoxica-
tion of triatomines have not previously considered North 
American triatomines, and few studies have investigated 
hosts other than dogs.

To explore the feasability and efficacy of a host-targeted 
control method to manage triatomine populations, we 
evaluated survivorship in T. gerstaeckeri following con-
sumption of blood meals directly from chickens orally 
treated with one of the following three active ingredients: 
fenbendazole, ivermectin and fluralaner. The results from 
this study will provide insight into the ability to treat 
chickens with insecticides that kill triatomines.

Methods
Study organisms
In this study, a trial was defined as any event during 
which triatomines are fed on live chickens. Each trial 
consisted of four chickens, of which three chickens in 
each trial were treated with one of the three insecti-
cides and one chicken was untreated (control). Each 
chicken was subjected to feeding by three triatomines 
(each individually contained). Trials were conducted at 
six unique time points following treatment of the chick-
ens with insecticide: days 0, 3, 7, 14, 28 and 56 days post-
treatment (DPT). Trials on day 0 were conducted twice, 
and trials on days 3, 7, 14, 28 and 56 were repeated three 
times. One additional round of trials were conducted at 
3, 7, and 14 DPT, but was ended early due to the manage-
ment practice of the Poultry Facility to apply acaricides 
to chickens, possibly coming into contact with the birds 
in our study.



Page 3 of 10Durden et al. Parasites & Vectors          (2023) 16:178 	

The chickens (Gallus gallus domesticus; Hy-line, W-36) 
used for this study were purchased from the Hy-Line 
Facility in Bryan, Texas (Hy-Line, West Des Moines, IA, 
USA). The chickens were all female and hatched on the 
same date. During the duration of the experiments, the 
chickens ranged in age from 18 to 38 weeks. The average 
weight of the chickens used was 1.34 kg. Chickens were 
housed individually in the Poultry Science Farm at Texas 
A&M University and provided fresh food (Layer Diet 
Formation; Texas A&M Poultry Science Center, College 
Station, TX, USA) and water (300  ml) daily. Individual 
chickens were only used in a single trial to minimize 
concern about acquired immunity following exposure to 
triatomine salivary proteins [35]. Due to molting activ-
ity in the triatomine nymphs, three control trials only 
used one triatomine per chicken. Therefore, a total of 234 
triatomines and 80 chickens were used throughout the 
duration of the study.

Triatoma gerstaeckeri were obtained from the colony 
maintained at Texas A&M University. This colony was 
housed in a Animal and Plant Health Inspection Ser-
vice–United States Department of Agriculture (USDA-
APHIS) PPQ-approved BSL2 quarantine facility and has 
been maintained for 6 years at 27–33  °C and 30–60% 
relative humidity [36, 37]. The insects used in the study 
are F2-F3 generations removed from wild populations in 
Texas. Defibrinated rabbit blood (HemoStat Laborato-
ries, Dixon, CA, USA) was provided once per week for 
feeding using a Hemotek membrane feeder (Hemotek 
Ltd., Lancashire, UK), but individuals selected for trials 
were starved for 2 weeks to 1 month [36]. All triatomines 
were housed in plastic containers lined with filter paper 
(Whatman plc, Maidstone, UK), with each plastic con-
tained placed within a larger plastic tub containing water-
impregnated plaster to maintain humidity [36]. Nymphal 
triatomines (3rd-5th instar) were used as they take regu-
lar blood meals but cannot yet fly.

Host treatment
Chickens were either given one of three systemic insec-
ticide products (ivermectin, fenbendazole, fluralaner) 
or no treatment (control chicken) at the same date. The 
insecticides ivermectin and fenbendazole were delivered 
in water based on chicken weight, with ivermectin dosed 
at 0.4  ml/kg body weight (BW) [38] and fenbendazole 
dosed at 0.5 ml/kg BW, as indicated on the product label. 
Chickens treated with these products were given half 
their normal daily allotment of water (150 ml) to ensure 
they consumed the full dose of insecticide. These chick-
ens were treated daily for 5 consecutive days, as indicated 
by previous studies [38]. Chickens were also monitored 
daily throughout the experiments.

In contrast, chickens treated with fluralaner were given 
a small oral chewable tablet containing the drug before 
their food in the morning. Previous studies evaluated flu-
ralaner in a powdered formation and found 0.5 mg/kg to 
be an optimal dose for chickens (G. g. domesticus) to kill 
poultry red mites (Dermanyssus gallinae) [39]. We calcu-
lated the necessary weight of the equivalent dose of flu-
ralaner in the dog chewable tablet to be 3.6 mg/kg BW; 
for the average-sized chicken (1.34 kg), this dose equated 
to a piece of chew approximately 3  mm in diameter. 
Dried mealworms were occasionally combined with the 
chew to improve chickens’ willingness to consume, and 
chickens were watched to ensure complete consumption 
of this small food item. Fluralaner was given to the chick-
ens twice, 7 days apart [40]. Feathers on the breast of the 
chicken were trimmed before triatomine feeding to allow 
better access to skin for feeding. Chickens were placed in 
a metal tray and bodies were restrained using bandage 
wrap (Healqu, Jersey City, NJ, USA) to minimize move-
ment and allow the triatomines to obtain a full blood 
meal. Chicken behavior was recorded and evaluated 
on a scale of 0 to 2, with 0 being no movement, 1 being 
average movement and 2 being a significant amount of 
movement.

Triatomine feeding
Third- to fifth-instar nymphs of T. gerstaeckeri were 
allowed to feed on the chickens at 0, 3, 7, 14, 28 and 56 
DPT. Day 0 post-treatment was defined as the day before 
treatment began. During each trial, three T. gerstaeckeri 
were fed on each chicken simultaneously. These bugs 
were housed in individual 50-ml conical tubes covered 
with a mesh lid. The tubes were then attached to the 
trimmed area on the chicken using bandage wrap (4 
in.; Healqu, LLC, Jersey City, NJ, USA), with the mesh 
against the skin. This method of attachment allowed bugs 
to stick their proboscis through the mesh and feed on the 
chicken. Trials were conducted in a dark environment 
under red light to simulate the triatomine feeding envi-
ronment while allowing observation [41]. Triatomines 
were allowed to feed for 45 min under these conditions. 
Up to 75 female Culex quinquefasciatus mosquitos were 
also fed on the chickens at the same time as the tri-
atomines to evaluate the effects of these treatments on 
survivorship. The mosquitos were placed on the chicken’s 
feet, away from where the triatomines were placed. The 
mosquito data will be published separately in the future.

After the blood-feeding event, the engorgement level 
and weight of each T. gerstaeckeri were recorded, and the 
triatomines were then held in a Peltier incubator (Shel-
Lab, Cornelius, OR, USA) at 26.7  °C and 50% relative 
humidity. Engorgements were given a number (rang-
ing from 0 to 3) to correlate with the size of the blood 
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meal, with 0 indicating unfed and 3 indicating fully fed, 
similar to methods used by Reithinger et al. [31]. A “fed” 
triatomine was defined as any individual bud with an 
engorgement score ≥ 1. The survivorship of individuals 
was recorded every 24 h for 10 days after the trial date. 
Individuals that exhibited signs of morbidity, defined 
as movement impairment with varied progression out-
comes, were considered dead in the mortality analysis. 
All individuals with signs of morbidity died within the 
10-day observation period.

Treatment concentrations in serum
To quantify fluralaner and fenbendazole in the chicken 
serum, 2.5  ml of whole chicken blood was collected 
in 3.0-ml BD Vacutainer® blood collection tubes (BD 
Manufacturing, Glenboro, MB, Canada) and then centri-
fuged at 10,000 RPM for 20 min, following which 1.0 ml 
of serum was transferred into microcentrifuge tubes 
(VWR International, Radnow, PA, USA). Serum samples 
were stored for approximately 3 months at − 20 °C before 
testing. Targeted liquid chromatography tandem mass 
spectrometry (LC-QQQ) analysis was performed on a 
TSQ Quantiva mass spectrometer (Thermo Fisher Sci-
entific, Waltham, MA, USA) coupled to a binary pump 
UHPLC (Ultimate3000; Thermo Fisher Scientific). Scan 
parameters for target ions in fluralaner and fenbendazole 
are given in Table  1. Chromatographic separation was 
achieved on a Hypersil Gold 5 µm, 50 mm × 3-mm C18 
column (Thermo Fisher Scientific) maintained at 30  °C, 
using a solvent gradient method. Sample acquisition 
and data analysis were performed using Trace Finder 3.3 
application (Thermo Fisher Scientific). Analysis was per-
formed at the Integrated Metabolomics Analysis Core at 
Texas A&M University.

Statistics
All statistical analyses were conducted using R (version 
4.2.2; R Foundation for Statistical Computing, Vienna). 
Triatoma gerstaeckeri survival data were analyzed using 
Kaplan–Meier survival curve ® package: survival) and 
subsequently compared using paired log-rank test (R 
package: survminer). Binary logistic regression was used 

to evaluate the effects of engorgement on survival, as 
well as the effects of treatment, DPT, interaction of treat-
ment and DPT and life stage on feeding success ® pack-
age: stats), with chicken behavior as a random effect. The 
receiver operating characteristic (ROC) was used for 
model goodness-of-fit test (R Package: pROC). Ordered 
logistic regression was used to analyze the effects of 
treatment, DPT and life stage on engorgement levels 
(R package: MASS). Model performance was evaluated 
using the Hosmer–Lemeshow goodness-of-fit test (R 
package: generalhoslem).

Results
Feeding success
Feeding success of the T. gerstaeckeri ranged from 68.6% 
to 83.3% under different chicken treatments, with an 
average of 77.4% (Fig.  1). Of the fed T. gerstaeckeri, the 
majority took a full blood meal (engorgement level 3). 
Treatment, life stage and DPT did not significantly affect 
feeding success and engorgement level in our analysis 
(Table 2). ROC analysis of the logistic regression for vari-
able effects on feeding success resulted in an area under 
the curve (AUC) value of 0.683, indicating acceptable 
model fitness (Additional file 1: Figure S1A). Also, prod-
uct, DPT and life stage were not seen to have an effect on 
engorgement (or blood meal size) in our analysis. Hos-
mer–Lemeshow tests conducted on the ordinal logistic 
regression model resulted in a P-value of 0.3986 (df = 11, 
χ2 = 11.55), indicating acceptable model fitness.

Survivorship
Of the three products, only fluralaner showed any effect 
on the survivorship of the T. gerstaeckeri insects (Fig. 2). 
At 3 DPT, all T. gerstaeckeri that fed on fluralaner-treated 
chickens died within 4 days of blood feeding. How-
ever, the efficacy of fluralaner decreased over time: at 7 
and 14 DPT, 90% and 50% of T. gerstaeckeri that fed on 
fluralaner-treated chickens, respectively, died within 
10  days, and no mortality was observed in T. gerstae-
ckeri that fed on fluralaner-treated chickens at 28 or 56 
DPT. For the Kaplan–Meyer analysis, we defined any 
insect that lived past the 10-day observation time as liv-
ing 11 days, indicating that the insects had lived past the 
observable range. Survivorship of T. gerstaeckeri varied 
by engorgement score, in which insects with an engorge-
ment score of 3 were 77% less likely to die compared to 
those with an engorgement score of 1 (logistic regres-
sion, P-value = 0.01, odds ratio [OR] 0.23, 95% confidence 
interval [CI] 0.08–0.64; Table 2). There was 100% survival 
for insects that fed on the control-, ivermectin- and fen-
bendazole-treated chickens at all time points. ROC anal-
ysis conducted on this model correlated with an AUC 

Table 1  Scan parameters for target ions

Insecticide Polarity Precursor (m/z) Product (m/z)

Fenbendazole Positive 300 131.1

Fenbendazole Positive 300 159

Fenbendazole Positive 300 268.1

Fluralaner Negative 554.1 424.1

Fluralaner Negative 554.1 494.1

Fluralaner Negative 554.1 534.1
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Fig. 1  Feeding success and engorgement level of Triatoma gerstaeckeri that were fed on treated and control chickens

Table 2  Logistic regression analysis of potential factors affecting blood feeding success, engorgement, and survivorship

DPT Days post-treatment

*Statistically significant at P ≦ 0.05 
a Engorgements were scored with a number (ranging from 0 to 3) to correlate with the size of the blood meal, with 0 indicating unfed and 3 indicating fully fed

Response variables Explanatory variables Levels in model Odds ratio 95% Confidence 
interval

P-value

Blood feeding success Product Control Reference

Fluralaner 1.11 0.31–3.71 0.95

Ivermectin 0.99 0.34–3.78 0.86

Fenbendazole 1.04 0.74–13.3 0.15

DPT 0.65 0.96–1.04 0.74

Life stage 3rd instar Reference

4th instar 0.30 0.13–2.50 0.57

5th instar 0.97 0.06–1.15 0.11

DPT × Product Fluralaner 0.97 0.96–1.08 0.59

Ivermectin 10.1 0.92–1.02 0.25

Fenbendazole 1.02 0.91–1.01 0.18

Engorgement Product Control Reference

Fluralaner 1.31 0.68–2.52 0.42

Ivermectin 1.15 0.59–2.24 0.69

Fenbendazole 1.45 0.76–2.80 0.27

DPT 1.00 0.99–1.02 0.85

Life stage 3rd instar Reference

4th instar 0.43 0.80–4.46 0.14

5th instar 0.48 0.35–1.94 0.66

Survivorship Engorgement scorea 1 Reference

2 0.40 0.11–1.28 0.13

3 0.23 0.08–0.64 0.01*
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value of 0.659, indicating acceptable model fitness (Addi-
tional file 1: Figure S1B).

Serum concentrations and efficacy of treatment protocol
The chicken serum concentrations of fluralaner had no 
consistent pattern observed across DPTs and replicates, 
which ranged from 93.5 ng/ml to below the limit of quan-
tification (2.5  ng/ml) (Table  3). All serum samples were 
below the lower limit of quantification for fenbendazole 
(< 5 ng/ml).

Discussion
We report here for the first time that blood-feeding on 
fluralaner-treated chickens resulted in subsequent mor-
tality in triatomines. These results further emphasize the 
potential of fluralaner as an effective drug for xenoin-
toxication, as well as provide a proof-of-concept for the 
addition of poultry to host-targeted interventions for 
Chagas disease management. Fluralaner is a member of 
the isoxazoline drug class and has been used in products 
to treat ectoparasites of various animals, including dogs, 
cats and, more recently, chickens [39, 40]. In the USA and 
other locations, fluralaner is the active ingredient in an 
oral chewable medication given to dogs to treat fleas and 
ticks under the name Bravecto® (Merck Animal Health 
USA, Rahway, NJ, USA).

Fluralaner treatment of chickens resulted in total T. 
gerstaeckeri mortality through to 14 DPT. This results 
matched the measurements of fluralaner concentration 
in the chicken serum, which showed detectable levels at 
3, 7 and 14 DPT but levels below the detectable limit at 
28 and 56 DPT. Our results corroborate those of similar 
studies performed with chickens treated with fluralaner 
for red mite treatment, in which the results suggested 
that the product shows the highest amount of efficacy 

within the first 2 weeks of treatment [42]. Other recent 
studies have found similar success in evaluating the use 
of fluralaner for control of the common bed bug Cimex 
lectularius in poultry farms [43]. The concentration of 
fluralaner in chicken plasma at different DPT was incon-
sistent among individual chickens, possibly explained by 
variation in the oral consumption of the chewable prod-
uct, although chickens were observed for complete con-
sumption of the food granules containing the insecticide, 
or heterogeneity of the fluralaner concentration in the 
chewable tablet.

Fluralaner has previously been evaluated as a potential 
control tool for Chagas disease through xenointoxication 
of domestic dogs, with the authors reported up to 100% 
mortality for 7 months in Triatoma brasiliensis [30]. Field 
trials in Argentina further revealed that treating dogs 
with fluralaner resulted in reduced T. infestans popula-
tions [44]. Our study reveals the potential for chickens 
to be added to host-targeted strategies for Chagas dis-
ease management, and future research should evaluate 
the effects of fluralaner on different triatomine species, 
as well as on triatomines that are resistant to other 
insecticides.

Fenbendazole is a broad-spectrum antihelminth in 
the benzimidazole drug class and has been evaluated in 
many animals, including cattle, dogs, chickens and others 
[45]. Safe-Guard® AquaSol (Merck Animal Health USA), 
a product that contains fenbendazole as the active ingre-
dient, is commercially available as an additive to chicken 
drinking water. While fenbendazole is not known to have 
activity against ectoparasites [46], it is one of the few 
antiparasitic drugs labeled for use in poultry in the USA. 
We observed no mortality in T. gerstaeckeri feeding on 
fendbendazole-treated chickens at 3 DPT and beyond. 
All plasma concentrations of fenbendazole were less than 

Fig. 2  Kaplan-Meyer survivorship curves for triatomines that fed on chickens treated with fluralaner (a) and triatomines that fed on untreated 
control chickens (b). The survival curve at 56 DPT was compared to others with an alpha level of 0.05. DPT, Days post treatment
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5  ng/ml, indicating that the minimum concentration to 
cause mortality in T. gerstaeckeri is higher than 5 ng/ml.

Ivermectin is an endectocide belonging to the macro-
cyclic lactone class that has been used to treat intestinal 
parasites of dogs, chickens, cats and other animals [47]. It 
is the active ingredient of Ivomec® Pour-On (Boehringer 
Ingelheim, Biberach, Germany), which is a commercial 
product available as a pour-on solution to treat intesti-
nal parasites in cattle, as well as used off label as a food 
additive and a water additive [38]. It has recently been 

assessed as a treatment for ectoparasites, including bed 
bugs and mosquitos [38, 43, 48]. Pharmacokinetic studies 
of ivermectin found that it reaches maximum concentra-
tion immediately after treatment and may reach the limit 
of quantification within 24  h [49]. Similarly, Nyguyen 
et al. found that the levels of ivermectin in chicken serum 
dropped quickly, with levels in the serum peaking at 24 h 
post-treatment and continuing to have a significant effect 
on mosquito mortality only until 3 DPT; by 5 DTP, lev-
els had reached below the lethal concentration, resulting 

Table 3  Concentrations of product active ingredients in chicken blood sample

DPT Days post-treatment
a Total of 3 repetitions of each trial
b Number of triatomines that fed on chicken
c LOQ = less than the limit of quantification. Fluralaner: 2.5 ng/ml; fenbendazole: 5 ng/ml
d Mean of the fed triatomines
e Not applicable; no triatomines took a blood meal from this chicken

Product DPT Repetitiona Nb Concentration (ng/ml)c Engorgementd Survival 
time 
(days)d

Fluralaner 3 1 2 43.05 2.0 3.5

2 1 4.45 3.0 3

3 3 LOQ 3.0 2

7 1 2 65.9 1.0 7.5

2 3 2.52 3.0 8.3

3 3 93.55 1.7 5.3

14 1 1 24.92 3.0 11

2 3 LOQ 1.7 10

3 2 5.40 3.0 11

28 1 2 LOQ 2.5 11

2 2 LOQ 2.5 11

3 3 LOQ 3.0 11

56 1 3 LOQ 2.7 11

2 3 LOQ 2.3 11

3 2 LOQ 2.0 11

Fenbendazole 3 1 3 LOQ 2.0 11

2 3 LOQ 2.0 11

3 3 LOQ 3.0 11

7 1 2 LOQ 2.0 11

2 2 LOQ 2.5 11

3 3 LOQ 3.0 11

14 1 2 LOQ 3.0 11

2 2 LOQ 2.0 11

3 3 LOQ 2.0 11

28 1 0 LOQ NAe NAe

2 3 LOQ 2.0 11

3 3 LOQ 2.0 11

56 1 2 LOQ 3.0 11

2 3 LOQ 3.0 11

3 1 LOQ 3.0 11
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in 50% mortality (LC50) [38]. Experiments done in tri-
atomines found that while 83.3% of triatomines which 
ingested ivermectin-containing blood meals of dogs 
died within 24 h, mortality was reduced to only 13% by 
day 6 [34]. Although ivermectin can cause high arthro-
pod mortality, its effect appears to be restricted to the 
first few days of treatment, likely due to factors such as 
rapid detoxification, clearance from the blood and high 
metabolic rate [43]. Given the interest in our study to 
identify single-dose interventions rather than continuous 
use interventions, the design of our study did not capture 
the acute timeframe over which ivermectin is expected to 
kill blood-feeding vectors. These results ultimately sug-
gest that ivermectin may not be effective for long-term 
treatment of ectoparasites [43], unless the dose is given 
consistently.

Not all T. gerstaeckeri that were applied to a chicken 
engaged in blood-feeding. To consider the role of chicken 
movement in feeding success, we included chicken 
behavior as a random effect in the logistic regression. We 
found that DPT, life stage and treatment did not signifi-
cantly affect the feeding success of the triatomines. Previ-
ous studies have shown that in some cases, insects, such 
as sand flies, may be repelled by an insecticide-treated 
host [50] but could subsequently divert the vector to 
nearby untreated hosts, such as humans. This could influ-
ence parasite transmission dynamics by encouraging vec-
tors to avoid feeding on treated dogs and instead feed on 
humans. However, we did not find a difference in feeding 
success across treatments and, therefore, our findings did 
not suggest any repellent effect of T. gerstaeckeri in any of 
the products evaluated.

While we expected to find that a higher engorgement 
would correlate to a higher percentage of mortality, we 
found that T. gerstaeckeri with an engorgement value of 
3 were less likely to die than insects with an engorgement 
value of 1 (Table  2). Although a larger blood meal may 
be assumed to contain a higher dose of insecticide, the 
concentrations of insecticide did not show a consistent 
pattern in the plasma of treated chickens in our study 
(Table 3).

In combination with xenointoxication of other common 
triatomine hosts, such as dogs and cats, treating chick-
ens with systemic insecticides may allow triatomines to 
be controlled in the domicile and peridomicile environ-
ment. Fluralaner products can be delivered to chickens as 
oral treats, as demonstrated in this study, or as a liquid 
additive to water, as done with Exzolt™ (Merck Animal 
Health USA), the poultry product for poultry mite con-
trol. Exzolt™ is not currently approved by the U.S. Food 
and Drug Agency although this product should be evalu-
ated for the control of additional blood-feeding arthro-
pods, such as triatomines. Xenointoxication may be 

especially effective when used in combination with other 
control methods, including housing modifications and 
insecticide spraying.

Conclusions
The results of this study demonstrate that fluralaner 
induces mortality of  T. gerstaeckeri after these insects 
take a blood meal from fluralaner-treated chickens. 
Xenointoxication of chickens may be used as a potential 
method to control vectorial transmission of T. cruzi, the 
etiological agent of Chagas disease.

Abbreviation
DPT	� Days post-treatment
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