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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:West Nile virus (WNV) is a globally distributed mosquito-borne virus of great public health

concern. The number of WNV human cases and mosquito infection patterns vary in space

and time. Many statistical models have been developed to understand and predict WNV

geographic and temporal dynamics. However, these modeling efforts have been disjointed
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with little model comparison and inconsistent validation. In this paper, we describe a frame-

work to unify and standardize WNV modeling efforts nationwide. WNV risk, detection, or

warning models for this review were solicited from active research groups working in differ-

ent regions of the United States. A total of 13 models were selected and described. The spa-

tial and temporal scales of each model were compared to guide the timing and the locations

for mosquito and virus surveillance, to support mosquito vector control decisions, and to

assist in conducting public health outreach campaigns at multiple scales of decision-making.

Our overarching goal is to bridge the existing gap between model development, which is

usually conducted as an academic exercise, and practical model applications, which occur

at state, tribal, local, or territorial public health and mosquito control agency levels. The pro-

posed model assessment and comparison framework helps clarify the value of individual

models for decision-making and identifies the appropriate temporal and spatial scope of

each model. This qualitative evaluation clearly identifies gaps in linking models to applied

decisions and sets the stage for a quantitative comparison of models. Specifically, whereas

many coarse-grained models (county resolution or greater) have been developed, the great-

est need is for fine-grained, short-term planning models (m–km, days–weeks) that remain

scarce. We further recommend quantifying the value of information for each decision to

identify decisions that would benefit most from model input.

Introduction

West Nile virus (WNV) is one of the most widely distributed mosquito-borne viruses and rep-

resents a global public health threat [1,2]. In the United States, WNV is the most common vec-

tor-borne virus with at least 51,801 human cases and 2,390 fatalities reported between its

introduction in 1999 and 2019 [3]. WNV has had substantial negative economic impacts

through healthcare costs (about $368 million to $2.4 billion in Texas in 2012) [4] and in

equine-related veterinary financial burdens (e.g., $1.9 million in 2002 in North Dakota prior to

the vaccine in 2004) [5]. In addition to human and veterinary disease, WNV has impacted

avian populations being reported in over 300 species of birds in the US [6]. The virus killed

millions of songbirds [7] and led to population declines in some species, in particular Ameri-

can crows (Corvus brachyrhynchos) [8,9], ruffed grouse (Bonasa umbellus) [10], and yellow-

billed magpies (Pica nuttalli) [9,11]. Effective preparedness and prevention are vital to reduce

the direct and indirect impacts of WNV on human health, the environment, and the economy.

The majority of human cases of WNV are asymptomatic (approximately 80%) [12]. Symp-

tomatic cases are classified as either non-neuroinvasive or as neuroinvasive, with neuroinva-

sive cases representing <1% of cases [12,13]. Many non-neuroinvasive cases of WNV go

unreported. However, due to the severity of symptoms, neuroinvasive case reports are

expected to be less biased [14]. Mosquito infection rates are typically expressed as either mini-

mum infection rates (MIRs) or maximum likelihood estimates of infection rate (MLE). MIR is

in common usage; however, MLE is more accurate and conveys more information [15,16].

Numerous statistical [17] and mathematical [18] models have been developed to under-

stand and predict WNV geographic and temporal dynamics that could be potentially used to

guide vector control and public health activities. Models can be used to understand the rela-

tionships between the spatial distribution of human pathogens, vectors, the prevalence of vec-

tor-borne diseases, including social demographic and environmental predictors [19]. Notably,

the model requirements and desired end result may vary depending on the decision-making
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mechanisms of stakeholders, and it is unlikely that there will be a single model that is suitable

for all decisions. A recent review classified 48 WNV models as risk, detection, or warning

models [17]. Risk models provide spatial information about relative risk, but do not contain

temporal information. Detection models make estimates for the current season but do not

integrate the current year’s WNV surveillance data. Early warning models include current-

year WNV surveillance data. Most models make predictions at a single broad or narrow spatial

or temporal scale, whereas decisions occur at multiple scales. Decisions on where and when to

apply larvicide (to control immature aquatic stages) or adulticide (to control vagile adults) are

usually made on a weekly timescale and a relatively fine spatial scale such as city blocks or

neighborhoods. In contrast, decisions on hiring and staffing for control need to be made on a

monthly or seasonal timescale at the level of the local mosquito control agency and often in

advance of a transmission season.

In this review, we developed a framework for applying models to decisions and tested it on

13 representative models that have been developed to understand and predict WNV geo-

graphic and temporal dynamics. These models include descriptive statistical models, a mathe-

matical mechanistic model, and data assimilation–based models. Specifically, we asked the

question “what information does each model provide about WNV?” It is critical that state,

tribal, local, or territorial public health and mosquito control agencies understand WNV

model outputs and find them useful in operational support. We compared model properties,

inputs, and outputs in the context of these public health decisions. Specifically, we examined

the capacity and suitability of the models with respect to spatial and temporal scales to guide

the timing and the locations for mosquito and virus surveillance, to support mosquito vector

control decisions, and to assist in conducting public health outreach campaigns.

Materials and methods

We aimed to review models that were in active development or currently being applied to the

West Nile virus system by decision-makers. Rather than identify individual models, we identified

research teams studying spatiotemporal dynamics of WNV based on academic conference pre-

sentations, recent publications, involvement in one of the 5 Centers for Disease Control and Pre-

vention (CDC) Regional Centers of Excellence, and referral to participate in a workshop hosted

by the National Socio-Ecological Synthesis Center (SESYNC). We aimed to identify and include a

diverse audience of participants to minimize various biases. We were initially capped at 25 partici-

pants but expanded the West Nile Virus Model Comparison Project participant list to 35 when

the workshop was moved to a virtual format. With respect to primary affiliation, 74.3% were from

academia, 11.4% from a department of health, and 14.3% in vector control. The 13 models

included in this review cover much of the regional variation within the US (Fig 1).

By taking a research team–based approach, we were able to take an in-depth look at each of

the selected models. This in-depth analysis would not have been possible with in a traditional

review format. The models selected here are broadly representative of the WNV models that

have been developed (e.g., statistical [20–24], data assimilation [25,26], mathematical trait–

based [27], machine learning [28–30], threshold-based risk [31–33], and distributed lag

approaches [34–36]). We also include a probabilistic historical null model in our comparison

[37]. Our framework is reproducible providing the templates for model description (S1 Text)

and instructions (S2 Text), the template questions for decision-makers (S3 Text), and detailed

descriptions of each model (S4 Text), so any omitted or future models could be evaluated and

compared following the framework outlined here.

This paper is organized starting with an overview of all models (Table 1), model inputs

(Table 2), model outputs and predictions (Fig 2 and Table 3), and, finally, model applications
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(Table 4). Decisions and models are compared with respect to temporal and spatial resolution

(Figs 3–5). The model description template used to collect model information is available as S1

TextAU : PleasenotethatSupplements1 � 4citationshavebeenchangedtoS1 � S4TexttomatchwiththeSupportinginformationcitations:Pleaseconfirmthatthesechangesarecorrect:, and the detailed description of all fields is provided in S2 Text. This framework lays the

foundation for qualitative assessment as a precursor to more rigorous quantitative compari-

sons for those models that are suitable for the intended purposes. The majority of the models

have been published; for those models, additional details can be found in the respective publi-

cations (see citations in Table 4). Computation time will depend on the computer used, and

no formal benchmarking was performed for the models. However, all models except the

Fig 1. Map of specific locations where WNV models included in this comparison have been applied. Some models (Spatial Risk Random Forest,

not shown) have been applied across the entire US. Green corresponds to analyses with state extents, blue to county extents, and pink to subcounty

extents. State outlines are from Natural Earth (https://www.naturalearthdata.com/downloads/50m-cultural-vectors/). City of Chicago boundary is

publicly available from the City of Chicago (https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-City/ewy2-6yfk), and county

boundaries and the outline for Coachella Valley were derived from US Census tract boundaries (https://www.census.gov/geographies/mapping-files/

time-series/geo/carto-boundary-file.html) dissolved to provide a single outline using the Dissolve algorithm in QGIS (https://qgis.org/en/site/). WNVAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1and2:Pleaseverifythatallentriesarecorrect:,

West Nile virus.

https://doi.org/10.1371/journal.pntd.0009653.g001

Table 1. Model overview: A comparison of model class, spatial, temporal resolution, software implementation, and code availability.

Model Class of

Model1
Spatial Resolution Temporal

Resolution

Software Code Available

A. Historical Null Spatial

patterns

Flexible Annual2 R www.github.com/akeyel/dfmip

B. Spatial Risk Random Forest Spatial

patterns

County Mean from 2005–

2018

R No

C. Temperature-trait-based

Relative R0 Model

Spatial

patterns

Flexible Flexible R https://datadryad.org/stash/dataset/

doi:10.5068/D1VW96

D. Spatial Risk High Resolution

BRT Model

Spatial

patterns

300 × 300 m Mean from (2004–

2017)

R No (in progress)

E. RF1 Early

warning

Flexible Annual R www.github.com/akeyel/rf1

F. NE_WNV County-years Early

warning

County Annual R, mgcv www.github.com/khelmsmith/flm_NE_

WNV

G. GLMER Ensemble Early

warning

13 × 13 km grid Monthly R No

H. Harris County Early

warning

Early

detection

Whole Harris County Month R Based on code for SAR models presented

by [38]

I. ArboMAP Early

detection

Typically county Weekly R https://github.com/EcoGRAPH/

ArboMAP/releases/

J. Chicago Ultra-Fine Scale Early

detection

1-km hexagon 1 week (epi weeks

18–38)

JMP, SAS No (in progress)

K. Model-EAKF System Early

detection

Mosquito abatement

district

Weekly Matlab/R Available upon request

L. Temperature-forced Model-

EAKF System

Early

detection

Mosquito abatement

district

Weekly Matlab/R Available upon request

M. California Risk Assessment Early

detection

Flexible Flexible VectorSurv Gateway

(website)3
Available upon request

1Spatial patterns: models with predictions that do not vary by year. Early warning: models that do not include current-year surveillance data, may include current-year

climate/weather data, and have a model lead time on the order of days to months. Early detection: models that include current-year surveillance data, may include other

data streams, and have a lead time on the order of days to months.
2The model itself is flexible with respect to temporal resolution. The GitHub implementation was designed for annual temporal resolution.
3The website is implemented in Javascript, PHP, SQL, Google Maps API, and Mapbox API.

https://doi.org/10.1371/journal.pntd.0009653.t001

PLOS NEGLECTED TROPICAL DISEASES West Nile virus models and public health decision-making

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009653 September 9, 2021 5 / 24

https://www.naturalearthdata.com/downloads/50m-cultural-vectors
https://data.cityofchicago.org/Facilities-Geographic-Boundaries/Boundaries-City/ewy2-6yfk
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://qgis.org/en/site/
https://doi.org/10.1371/journal.pntd.0009653.g001
http://www.github.com/akeyel/dfmip
http://dx.doi.org/10.5068/D1VW96
http://dx.doi.org/10.5068/D1VW96
http://www.github.com/akeyel/rf1
http://www.github.com/khelmsmith/flm_NE_WNV
http://www.github.com/khelmsmith/flm_NE_WNV
https://github.com/EcoGRAPH/ArboMAP/releases/
https://github.com/EcoGRAPH/ArboMAP/releases/
https://doi.org/10.1371/journal.pntd.0009653.t001
https://doi.org/10.1371/journal.pntd.0009653


GLMER Ensemble are expected to run in under an hour for a county or smaller extent on a

PC with a 2.9 GHz processor and 16 GB RAM.

In order to understand public decision-making processes and goals, we sent a request for

information on what decisions are routinely made with respect to WNV (Table 5, form pro-

vided as S3 Text), through the Centers for Disease Control Regional Centers of Excellence. We

received responses from 4 mosquito abatement districts (St. Tammany Parish Mosquito

Abatement, LA; Northwest Mosquito Abatement District, IL; North Shore Mosquito Abate-

ment District, IL; and the Harris County Mosquito and Vector Control Division, TX). We cat-

egorized the responses and then compared the suitability of each model with respect to

temporal and spatial scale in relation to each decision identified by the public health profes-

sionals, until a consensus was reached.

Model classification framework

The models varied in spatial and temporal resolution. Based on the distribution of temporal

and spatial resolutions in Fig 4, we propose a 3 × 3 description system for models based on

their temporal and spatial scales (Table 6). We define 3 temporal scales: (1) short-term, corre-

sponding to operational decisions made on the scale of weeks to months; (2) medium-term,

corresponding to decisions made over months within a year related to planning and prepara-

tion; and (3) long-term for planning efforts made across multiple years. With respect to spatial

scale, we identify fine-grain models with resolution of meters to kilometers (e.g., Fig 6C),

medium-grain models with a resolution of a single management unit (e.g., mosquito abate-

ment districts or county subdivisions; Fig 6B), and coarse-grain models that make predictions

for multiple aggregated management units or single management units with large geographic

coverage (e.g., county-level models; Fig 6A). Note that these scales apply to the resolution of

the models, not the extent of the models. For example, weekly risk estimates with a 30 m × 30

m cell size would be a short-term fine-grain model, regardless of whether it was applied to a

single neighborhood or an entire country. The aim of this description system is to better align

model descriptions with the scales of application. For example, decisions requiring a short-

term fine-grain model, such as where to apply an adulticide, would not be informed by a

Table 2. Model inputs.

Model Human Data Mosquito Surveillance Climate/Weather Land-cover Sociological Other

A. Historical Null Y1 Y1 N N N N

B. Spatial Risk Random Forest Y N Y N N N

C. Temperature-trait-based Relative R0 Model N N Y N N N

D. Spatial Risk High Resolution BRT Y N Y Y N Y

E. RF1 Y Y Y Y Y Y

F. NE_WNV County-years Y N Y N N N

G. GLMER Ensemble N Y Y N N N

H. Harris County N Y Y Y N Y

I. ArboMAP Y Y Y N N N

J. Chicago Ultra-Fine Scale Y Y Y Y Y Y

K. Model-EAKF System Y Y N N N Y

L. Temperature-forced Model-EAKF System Y Y Y N N Y

M. California Risk Assessment Y Y Y Y N Y

1For the Null model, only human data are required to predict human cases, and only mosquito surveillance data are required to predict mosquito infection rates.

Mosquito surveillance is not used to predict human cases or vice versa in this model.

https://doi.org/10.1371/journal.pntd.0009653.t002
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medium-term coarse-grain planning model. We suggest that models could also be classified

based on lead time and accuracy, sensitivity, and specificity, but these classifications may be

region and/or scale dependent and, therefore, require a rigorous quantitative comparison to

be developed.

Overview of models

The individual models are described in detail in S4 Text. Here, we summarize the models with

respect to the purpose for which they were developed, the statistical basis of each model, the

models’ use of surveillance data and climate data, and, finally, on their model selection

approaches.

Fig 2. Examples of key model outputs. (A) A summary of key outputs for 1 year. (B) Cumulative human cases (annual human cases), (C) Culex mosquito abundance per

trap night, (D) vector index (Culex abundance times infection rate by week), and (E) MIR per 1,000 mosquitoes. Peak MLE/IR is the mosquito infection rate in the peak

week, Peak week for MLE/IR is the week in which the peak is reached, while Seasonal MLE/MIR is the infection rate over the season when the mosquitoes are active (using

either MLEs or MIRs). Culex, Culex abundance; IR, mosquito infection rate, either as MIR or MLE; HC, human cases; MIR, minimum infection rate; MLE, maximum

likelihood estimate of infection rate; VI, vector index.

https://doi.org/10.1371/journal.pntd.0009653.g002

Table 3. Model output/predictions. Prediction targets included human case counts, mosquito infection rates as either MIRs or as MLEs. Probabilistic models are those

that generate predictions as probability distributions rather than single mean values. The additional prediction targets column indicates whether the model generates addi-

tional outputs not otherwise included in the table.

Model Annual Human

Cases

Seasonal MLE/

MIR

Peak MLE/

MIR

Peak Week for

MLE/MIR1
Vector Index

(weekly)

Probabil-

istic?

Additional Prediction

Targets

A. Historical Null Y Y N N N Y N

B. Spatial Risk Random Forest N N N N N N Y

C. Temperature-trait-based

Relative R0 Model

N N N N N Y Y

D. Spatial Risk High Resolution

BRT

N N N N N Y Y

E. RF1 Y Y N N NAU : PleasenotethattheindicatorsinTable3andinthetablefootnoteshavebeenrearrangedfrom1 � 9; fromlefttorightacrossthetableheadingsandthenacrosseachrow;movingdownward;asperPLOSstyle:Pleasecheckandconfirmthatthechangesarecorrect:Y2 N

F. NE_WNV County-years Y N N N N Y Y3

G. GLMER Ensemble N Y N N N N N

H. Harris County N Y Y Y N N4 Y

I. ArboMAP Y Y N N N Y Y

J. Chicago Ultra-Fine Scale Y N N N N5 Y Y6

K. Model-EAKF System Y Y Y Y N7 Y Y8

L. Temperature-forced Model-

EAKF System

Y Y Y Y N7 Y Y8

M. California Risk Assessment N N N N N N Y9

1Peak week could also be calculated for human cases but typically is not done in practice; therefore, this output was omitted from the table.
2The model has been upgraded since the initial publication to support probabilistic outputs.
3Counties with cases.
4In principle, the model could produce probabilistic output.
5The model uses vector index as a predictor but does not predict values for vector index.
6Can theoretically inverse cases and MIR, but model not tested for that.
7The model can be parameterized with either MLE infection rates or vector index, but empirically, the results from the vector index parameterization were not as strong,

and, therefore, the final model is based on MLE.
8+/−25% of peak week, human cases, total infections over the season; +/−25% or 1 human case.
9Virus transmission risk to humans.

BRT, Boosted Regression Trees; EAKF, Ensemble-adjustment Kalman Filter; MIRAU : AbbreviationlistshavebeencompiledforthoseusedinTables3 � 5:Pleaseverifythatallentriesarecorrect:, minimum infection rate; MLE, maximum likelihood estimate of infection rate.

https://doi.org/10.1371/journal.pntd.0009653.t003
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Table 4. Model applications. Only published model applications were included. Each line corresponds to a separate model test; therefore, some models appear more

than once. References are listed for further details.

Model Study Prediction Target Sample Size Spatial Domain Time

Domain

Testing Method1AU : PleasenotethattheindicatorsinTable4andinthetablefootnoteshavebeenrearrangedfrom1 � 8; fromlefttorightacrossthetableheadingsandthenacrosseachrow;movingdownward; asperPLOSstyle:Pleasecheckandconfirmthatthechangesarecorrect:Metric Score2

B. Spatial Risk

Random Forest

[29] Mean annual incidence per

100,000 population

43,512 county-

years

Conterminous US

(3,108 counties)

2005–2018,

averaged

Bootstrapping R2
pred = 0.59 [0.44–

0.70], RMSE = 3.7

D. Spatial Risk

High Resolution

BRT

[30] Ranked relative risk (0–1) 1,378 human cases South Dakota 2004–2017 Out of sample

data

AUC = 0.727

E. RF1 [28] Annual human cases 882 county-years New York and

Connecticut

2000–2015 LOYOCV R2
pred = 0.72,

RMSE = 1.6

E. RF1 [28] Seasonal mosquito MLE 218 county-years New York and

Connecticut

2000–2015 LOYOCV R2
pred = 0.45,

RMSE = 2.3

E. RF1 [28] Seasonal mosquito MLE 2,596 trap-years New York and

Connecticut by trap

2000–2015 LOYOCV R2
pred = 0.53,

RMSE = 1.0

F. NE_WNV

County-years

[34] 2018 human cases3 1,472 county-years Nebraska 2002–2017 Out of sample

data

CRPS = 1.90

F. NE_WNV

County-years

[34] 2018 WNV positive counties3 1,472 county-years Nebraska 2002–2017 Out of sample

data

Accuracy = 0.717

G. GLMER

Ensemble

[20] MLE mosquito infection rate 225 grid-years Suffolk County,

New York

2001–2015 LOYOCV RMSE = 4.27

H. Harris County [21] MLE mosquito infection rate

(1-month lead)

130,567 trap-nights Harris County,

Texas

2002–2016 Out of sample

data

R2
pred = 0.8

H. Harris County [21] Mosquito abundance (1-month

lead)

10,533,033

mosquitoes

Harris County,

Texas

2002–2016 Out of sample

data

R2
pred = 0.2

I. ArboMAP [35] Positive county-weeks Approximately

9,504 county-weeks

(training)

Approximately 792

county-weeks

(testing)

South Dakota 2004–2015

(training)

2016 (testing)

Out of sample

data

AUC = 0.836–0.8564

I. ArboMAP [36] Positive county-weeks Approximately

11,088 county-

weeks

South Dakota 2004–20175 Fit to training

data only

AUC = 0.876, Rs = 0.84

J. Chicago Ultra-

Fine Scale

[22–

24]

Human case probability (by

hexagon)

1,346,940 hexagon-

weeks

Variable, up to

5,345 1-km

hexagons

2005–20166 Fit to training

data only

R2> 0.85;

RMSE < 0.02;

AUC > 0.90

K. Model-EAKF

System

[25] Annual human cases; peak

mosquito infection rates; peak

timing of infectious mosquitoes;

annual infectious mosquitoes

21 county-years 2 counties (Suffolk,

New York and

Cook, Illinois)

Weekly,

Varied by

location

Retrospective

data assimilation

Threshold-based
accuracy7

K. Model-EAKF

System

[26] Multiple8 110 outbreak-years 12 counties Weekly,

Varied by

location

Retrospective

data assimilation

Threshold-based
accuracy7

K. Model-EAKF

System

[39] Multiple8 4 county-years 4 counties Weekly, 2017 Real-time data

assimilation

Threshold-based
accuracy7

L. Temperature-

forced Model-

EAKF System

[26] Multiple8 110 outbreak- years 12 counties Weekly,

Varied by

location

Retrospective

data assimilation

Threshold-based
accuracy7

M. California

Risk Assessment

[31] Historical outbreaks of western

equine encephalomyelitis and

St. Louis encephalitis as proxy

for WNV

14 agency-years California Half-months Temporal

correspondence

Early detection of

arbovirus risk prior to

outbreaks

M. California

Risk Assessment

[32] Onset and peak of human cases

by geographic region

12 half-months in 3

regions

California Half-months Retrospective

data assimilation

Early detection of

WNV risk prior to

onset and peak of

human cases

(Continued)
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Model purposes. The models included in this review were developed for a variety of pur-

poses, including generating present-day patterns of spatial risk, predicting risk under future

climate change, and providing medium- to short-term planning guidance (see Table 6). The

Spatial Risk High Resolution BRT model [30], Spatial Risk Random Forest model [29], and

Temperature-trait-based Relative R0 models [27] were all developed for spatial risk, with the

latter two with an aim to also provide information about climate change risk. The RF1 model

can also been used to make climate change risk predictions [87].

Medium-term risk guidance models include the RF1 model and the NE_WNV County-

years model [34] for human cases at the county-annual scale (and mosquito-based risk for

RF1), and the GLMER Ensemble [28] and the Harris County models aimed at mosquito-based

infection rates (and abundance for the Harris County model) at the monthly scale. ArboMAP

(Arbovirus Modeling and Prediction) [35,36], the Model-EAKF Systems [25,26], the Califor-

nia Risk Assessment [31–33], and the Chicago Ultra-Fine Scale (UFS) models [23,24] all pro-

vide short-term risk information. Model-EAKF System and the Chicago UFS models model

human cases directly. ArboMAP focuses on the probability of a county having at least 1

human case in a given week, while the California Risk Assessment model provides an index of

relative risk without a quantitative prediction of numbers of human cases. ArboMAP was spe-

cifically designed to facilitate WNV forecasting by epidemiologists working in state public

health offices, while the California Risk Assessment model is currently used by the state of Cal-

ifornia to guide vector control operations [41]. The Model-EAKF Systems provide a data

assimilation approach, which uses data from the current season to update the model predic-

tions as the season progresses to make weekly predictions in areas with high levels of mosquito

surveillance.

Statistical basis. Broadly, the models fall into 3 general approaches: machine learning

techniques, traditional statistical approaches, and mathematical models. For the machine

learning approaches, Hess and colleagues used Boosted Regression Trees [42], while the Spatial

Risk Random Forest Model and the RF1 Models used Random Forest methods [43,44]. The

Table 4. (Continued)

Model Study Prediction Target Sample Size Spatial Domain Time

Domain

Testing Method1AU : PleasenotethattheindicatorsinTable4andinthetablefootnoteshavebeenrearrangedfrom1 � 8; fromlefttorightacrossthetableheadingsandthenacrosseachrow;movingdownward; asperPLOSstyle:Pleasecheckandconfirmthatthechangesarecorrect:Metric Score2

M. California

Risk Assessment

[33] Emergency planning threshold

(risk� 2.6)

11,476 trap-nights Los Angeles

Country, California

2004–2010 Retrospective

data assimilation

AUC = 0.982

1LOYOCV: leave-one-year-out cross-validation; Out of sample data: accuracy based on data not used to develop the model; Fit to training data only: accuracy based on

the same data used to develop the model; Retrospective data assimilation: finalized data until the time of forecast; Real-time data assimilation: data processed and

available at the time of forecast.
2R2

pred: predictive R2, i.e., an R2 calculated on data outside the sample, Rs: Spearman correlation coefficient, AUC: area under the curve, Threshold-based accuracy:

+/−25% of peak week, human cases, total infections over the season; +/−25% or 1 human case, RMSE: Root Mean Squared Error, CRPS: Continuous Ranked Probability

Score.
3Results for 2018 reported here, validation was also performed separately for 2012–2017, see [34] for details.
4Three analyses presented: short-term: AUC = 0.856, annual made on July 5: AUC = 0.836, annual made on July 39: AUC = 0.855.
5Restricted to July–September for each year.
6Restricted to 21 epi weeks per year.
7Varied by analysis and lead time.
8Prediction targets: human cases in next 3 weeks; annual human cases; week with highest percentage of infectious mosquitoes; peak mosquito infection rate; annual

infectious mosquitoes.

AUC, area under the curve; CRPS, Continuous Ranked Probability Score; LOYOCV: leave-one-year-out cross-validation; RMSE, Root Mean Squared Error; WNV,

West Nile virus.

https://doi.org/10.1371/journal.pntd.0009653.t004
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RF1 Model was modified to produce probabilistic output using quantile random forests

[45,46].

Traditional statistical approaches include the GLMER Ensemble, using negative binomial

mixed-effects models (GLMER Ensemble). The Harris County, TX Model is a seasonally auto-

regressive forced model [21], i.e., a linear model that capture nonsymmetric features in the sea-

sonality of the underlying data. The NE_WNV County-years model [34] used a general

additive model with thin-plate splines (the R package mgcv) [47] for nonparametric modeling

of distributed lags (lag lengths of 12, 18, 24, 30, and 36 months) of drought and temperature

data, using restricted maximum likelihood estimation with a log link and negative binomial

distribution. The ArboMAP model also used a distributed lags approach. ArboMAP used

logistic regression models with environmental indices (temperature, precipitation, humidity,

etc.) included as distributed lags, with shapes governed by splines [35,36]. The Chicago UFS

model is also based on logistic regression, with 1 km-wide hexagonal (spatial) and 1-week

(temporal) resolutions using environmental, land-use/land-cover, historical weather, light

Fig 3. Generalized overview of major factors, tools, and decisions utilized by mosquito control agencies. This figure is based on 4 representative mosquito

abatement districts: 2 in Chicago (IL), Slidell (LA), and Houston (TX). Management practices may differ from program to program, but similar challenges and

decisions are made from across varying spatial (local to district-wide) and temporal (days to multiple months) scales.

https://doi.org/10.1371/journal.pntd.0009653.g003
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pollution, human socioeconomic and demographic, mosquito abundance and infection, mos-

quito landing rates on humans, and human activity/exposure risk as covariates.

For the mathematical models, the Temperature-trait-based Relative R0 model used a modi-

fied Ross–McDonald equation that incorporates nonlinear thermal response curves fit to labo-

ratory mosquito and virus trait data. The Model-EAKF System [25] and Temperature-forced

Model-EAKF System [26] used a standard susceptible–infected–recovered epidemiological

construct and were optimized using a data assimilation method (the ensemble adjustment Kal-

man filter (EAKF) [48] and 2 observed data streams: mosquito infection rates and reported

human WNV cases. The models differ in that the Temperature-forced Model-EAKF System

accounted for temperature modulation of the extrinsic incubation period for mosquitos [26].

The California Risk Assessment model estimates an overall level of WNV risk based on the

average of all available risk elements (1) average daily temperature; (2) relative abundance of

adult Culex mosquitoes versus the historical average; (3) WNV infection prevalence in Culex
mosquitoes; (4) sentinel chicken seroconversions; (5) WNV infections in dead birds; and (6)

human cases. Because human cases are affected by reporting lags and thus are unreliable

Fig 4. The 13 models reviewed in this paper arranged by spatial and temporal resolution. Rectangles with decreasing shades of gray indicate less coverage

identifying potential knowledge gaps. These gaps may guide future model development or require additional data collection, as many models are at the county-

annual scale due to data availability.

https://doi.org/10.1371/journal.pntd.0009653.g004
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Fig 5. A summary of the spatial and temporal resolution for the 41 models reviewed in [17] that are not included in Fig 4. Numbers indicate the

number of models at that spatial and temporal scale.

https://doi.org/10.1371/journal.pntd.0009653.g005

Table 5. List of common decisions made regarding a public health and vector control response to WNV. Letters

correspond to models in Tables 1–4 and indicate models with an appropriate spatial or temporal resolution to inform

the decision. Note that this pertains to the scale on which predictions are made and provides no information on the

accuracy of the model predictions. As such, models with appropriate scale, but insufficient accuracy, would not be use-

ful in an operational context.

Public health decisions Potentially applicable models

When (timing) Where (area)

Mosquito and WNV surveillance (trap sites) C, M C, D, M

Mosquito and WNV surveillance (county/district thresholds) C, M A–J, M

Public health and outreach C, E–M A–J, M

Larviciding C, H–M C, J, M

Truck-based adulticiding C, I–M C, J, M

Aerial adulticiding C, I–M C, J, M

WNV, West Nile virus.

https://doi.org/10.1371/journal.pntd.0009653.t005
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indicators of real-time risk, they are typically omitted from risk calculations that guide mos-

quito control operations during the season. Each surveillance element is assigned a value on an

ordinal scale (1 to 5 for lowest to highest risk), and the mean value of all factors is calculated to

estimate the WNV transmission risk and corresponding response level (i.e., normal season

(1.0 to 2.5), emergency planning (2.6 to 4.0), and epidemic (4.1 to 5.0)).

Use of surveillance data. Models varied in their use of mosquito and human surveillance

data. Models using mosquito data calculated infection rates but differed in the approaches

used to do so. The RF1 model used a published R method [49] applied at the county level,

pooled for 3 Culex species: Culex pipiens, Culex restuans, and Culex salinarius. The Harris

County Model used the maximum likelihood method by Farrington [50]. In the GLMER

Ensemble, the Culex spp. infection rate was calculated for each NLDAS grid cell and year

using maximum likelihood approaches. Similarly, the 2 Model-EAKF Systems estimate mos-

quito infection rates by week but require at least 1 positive mosquito and at least 300 mosquito

samples per week. In ArboMAP, mosquito data are modeled in their own mixed-effects mod-

els, in which exponential growth curves are imposed on mosquito infection rates in the early

season. The estimated growth rate is then used as a covariate in the human models. The Chi-

cago UFS model used MIRs in conjunction with abundance to estimate vector index. For the

California Risk Assessment model, mosquito abundance is compared to the 5-year average for

the same area and time period. Viral infection rates are expressed as either MIRs [51] or MLEs

[52] per 1,000 female mosquitoes tested. Due to differences in the attractiveness of traps to dif-

ferent subsets of the population, abundance and infection prevalence data are not pooled

across trap types, but the most sensitive trap type’s value is used in the risk assessment. Also,

due to differences in the sensitivity of traps between species and spatial heterogeneity in the

distribution of Culex tarsalis and Cx. pipiens complex mosquitoes relative to humans, separate

risk calculations for each species are suggested. The Temperature-trait-based Relative R0

model does not incorporate surveillance data as currently structured.

The 2 Model-EAKF Systems include human case data from the current year, unlike virtu-

ally all the other models (the California Risk Assessment allows it to be incorporated, but this

is generally not done in practice). Historical human case data are used by several of the models,

including the RF1, ArboMAP, the Chicago UFS, and the NE_WNV County-years models. In

addition to training on past estimates of human cases, the NE_WNV County-years model

included the rate of cumulative incidence of human cases as the total number of previous

cases, for each county and each year, per 100,000 population on the basis that previous expo-

sure to WNV reduces human infection rates [53]. The Chicago UFS model included human

cases following a zero-inflated Poisson distribution.

Climate data inputs. While many models used climate data, models were constructed

with different climate data sources. The Spatial Risk Random Forest model was based on 4 km

gridded data from the Precipitation elevation Regressions on Independent Slopes Model

Table 6. Classification of temporal and spatial resolutions relevant to vector control and public health decision-

making.

Classification Term Spatial or Temporal Resolution

Long-term planning Temporal Years to decades

Medium-term planning Temporal Months to year

Short-term planning Temporal Days to weeks

Coarse grain Spatial Multiple/large management districts (e.g., county or above)

Medium grain Spatial Single management district or county subdivision

Fine grain Spatial Meters to km, within a management district

https://doi.org/10.1371/journal.pntd.0009653.t006
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(PRISM) [54,55]. Time series of weather data used in ArboMAP are typically obtained from

gridMET [56] through Google Earth Engine (GEE) [57] using a custom downloader script

[58]. gridMET combines data from both PRISM [55] and NLDAS-2 [59] into a single high-res-

olution gridded data set. The GLMER Ensemble model used approximately 13 km2 gridded

monthly averages in temperature, precipitation, specific humidity, and soil moisture [59] from

the North American Land Data Assimilation System (NLDAS) Mosaic submodel data set. The

RF1 model used soil moisture data from the NLDAS Noah submodel data set, and initially

with a published ensemble of temperature and precipitation data [60], and later with data from

gridMET as above. The NE_WNV County-years model used lags of drought (1-month Stan-

dardized Precipitation Index (SPEI); 1-month Standardized Precipitation and Evapotranspira-

tion Index) [61] and temperature variables (standardized temperature deviations from the

mean, standardized precipitation deviations from the mean, from NOAA’s Climate Divisional

Database) [62]. The Harris County model used the mean, standard deviation, and kurtosis for

temperature and rainfall from local weather stations. While the Temperature-trait-based Rela-

tive R0 Model requires a temperature input, the model is flexible with respect to the choice of

temperature input. The Temperature-forced Model-EAKF System used a mean climatology

based on NLDAS-2 data from 1981 to 2000 and each outbreak year for each region of interest.

Model selection approaches. The GLMER Ensemble approach, the Harris County

Model, and the NE_WNV County-years model all used the Akaike information criterion

(AIC) for model selection. In the Harris County and NE_WNV County-years models, the

model that minimized the AIC score was selected. In the GLMER Ensemble, all combinations

of predictor variables were considered. Those models for which all explanatory variables were

significant with 95% confidence were ranked by AIC [63,64]. The Akaike weight was calcu-

lated, and the set of models whose Akaike weights sum to 0.95 were used for the inference. The

RF1 model used a two-stage fitting process for the Random Forest, removing all variables

below a calculated mean importance score, and then removing additional variables that did

not increase the model’s explanatory power using a variance partitioning approach [28]. The

Spatial Risk Random Forest model did not use variable selection and included all predictor

variables in the inference. The Model-EAKF System optimizes a 300-member ensemble of

model simulations and, in so doing, provide an improved, posterior estimate of the true state

as well as estimates of unobserved state variables and parameters. Model-EAKF System fore-

casts were repeated 10 times with different randomly selected initial conditions and evaluated

for accuracy according to prescribed forecast metrics.

Discussion

We qualitatively compared the models in the context of 6 potential decisions related to public

health and vector control response to WNV (Table 5). This qualitative comparison was made

based on the scale of the model and the scale of the decision. We found that some models,

such as those developed at the coarser spatial and temporal scales (i.e., county/annual), are not

useful for many of the decisions needed for vector control operations. Indeed, only 3 out of 13

models (the Temperature-trait-based Relative R0 model, the California Risk Assessment, and

the Chicago UFS model), would be potentially capable to guide spatial and temporal adulticid-

ing based on model resolution. However, the Temperature-trait-based Relative R0 model had

Fig 6. Examples of the 3 spatial scales described in Table 6 for Long Island, NY. (a) Coarse-grain: county, (b) medium-grain:

county subdivision, and (c) fine-grain: 30 × 30 m resolution for vegetation types [40], with the NY county outlines in gray for

context. County outlines and county subdivisions from the 2017 US Census https://www.census.gov/geo/maps-data/data/tiger-line.

html).

https://doi.org/10.1371/journal.pntd.0009653.g006
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not been developed or validated for this purpose. The California Risk Assessment model pro-

vides a threshold-based risk but does not quantitatively predict the number of human cases in

the present year.

The models reviewed here included 3 different classes of models. Nearly all of the models

have been implemented in the statistical software R [65]. Most of the models reviewed used

human data as an input with 4 exceptions (the Temperature-trait-based Relative R0 model, the

GLMER Ensemble, the Harris County model, and the California Risk Assessment as applied

for real-time decisions by most vector control agencies). Climate was also a common input for

models, having been used in all models except the Model-EAKF System (but note there is a

temperature-forced version) and the null models. This is unsurprising, given the importance

of climatic conditions on the mosquito life cycle (e.g., [66]). Landcover, sociological inputs,

and other inputs were less common, even though these inputs may also be important in under-

standing disease dynamics (e.g., [67,68]). Model outputs were more heterogeneous, making

comparisons across models more challenging. Most models focused on either annual cases or

seasonal mosquito infection rates, or both. Fewer models examined patterns within a season,

notably the ArboMAP model, the Chicago UFS model, the Harris County model, the 2 Model-

EAKF System models, and the California Risk Assessment. Model applications are difficult to

compare qualitatively and will be best examined through quantitative comparisons on com-

mon data sets, as R2 values and RMSE values can be difficult to interpret across scales and in

the context of different numbers of cases or infection rates. Most of the models have been

applied with nonoverlapping domains, making direct comparisons more difficult (Fig 1).

Some of the models are specific examples of more general approaches that can be applied at

finer scales.

Many of the models were designed to give an indication of whether it will be a “good year”

or a “bad year” for WNV, without a direct, specific connection to decisions related to WNV

control (e.g., Models E, F, G, I; Table 1). Temperature and precipitation may play a large role

in such determinations [69], and such relationships may be the complex result of several inter-

acting traits [27]. None of the models directly address the question of initial vector or viral sur-

veillance, although such surveillance could be guided by spatial risk, in which case models A to

H could be used to help guide general regions. The California Risk Assessment (M) provides

recommendations for enhanced surveillance as risk levels increase. The Model EAKF Systems

(I and J) specify specific quantitative surveillance requirements in order to be implemented

but do not address the question of where such surveillance should take place.

Broadly, many of these models were developed within a local context. As a consequence,

they are not necessarily the “best” model, but one sufficient to the task. In addition, being

highly local means the models may be difficult to generalize to new locations. Regional varia-

tion is expected in the underlying processes. In some cases, the models are very closely tied to

a specific region (e.g., the Chicago UFS model and the GLMER Ensemble) and influenced by

variability in surveillance programs (spatiotemporal resolution). Regions vary in the dominant

mosquito vector(s), the degree to which they are rural or urban, human risk-taking behavior

(e.g., time spent outdoors, presence of window screens, and presence of mosquito breeding

habitat), mosquito surveillance, and human socioeconomic status and ability to report biting

mosquitoes.

Our analyses demonstrated that there is no “one size fits all” model—different models may

be needed to guide the vector control and public health decisions considered here. Some deci-

sions are made early in the season, while others are made later in the season. Decisions during

the season may be constrained by planning made prior to the mosquito season. The decisions

also vary on the spatial scale at which they take place, with public outreach taking place poten-

tially across an entire state, while truck-based or aerial insecticide applications take place on
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localized scales of up to several square kilometers. It is important to note that these decisions

are informed by WNV risk but are also influenced by social factors (e.g., interest in vector-

borne disease around outdoor activities [70] or specific holidays such as Memorial Day or

Fourth of July), financial (e.g., budget constraints) [70], environmental (e.g., current weather),

and regulatory/political factors (e.g., protected ecosystems and restrictions on adulticide appli-

cations and willingness to pay for control) [70–73]. Vector control operations in the US are

highly localized, and substantial regional variation exists in the timing of decisions, the thresh-

olds used for decisions, and the willingness to apply adulticides. For example, Harris County,

TX is primarily managed by a single agency (Harris County Public Health Mosquito and Vec-

tor Control Division, although several small cities and municipalities will also control nuisance

mosquitoes) covering a geographic area of approximately 4,600 km2. Cook and DuPage Coun-

ties, Illinois have 4 mosquito abatement districts covering a geographic area of almost 3,500

km2.

WNV case incidence rates also vary from region to region. A change in the associated

causal factors would likely influence the particular model’s performance. Regions also differ in

their surveillance efforts, surveillance methods, and trap density. These factors affect the qual-

ity of the data going into the models and the quality of the data being used to evaluate the

model. For example, a model could do a very good job of predicting the “true value,” but with

poor data, the model may be scored worse than a model that predicted an observed prevalence

that was consistent with biases created through data collection or sampling. Regions also vary

in their turnaround times for data [39], and this may influence the degree to which different

models can be implemented. Thus, more than one model may be necessary, and models may

need to accommodate additional location-specific constraints.

In addition, the workshop discussions highlighted the importance of quantifying the value

of information associated with model results. In many mosquito abatement districts, larvicide

and public outreach are routine actions and are unlikely to be strongly affected by variations in

the predicted risk of WNV. Other districts may dynamically increase public health outreach or

larvicide application during “bad” years. In contrast, decisions regarding adulticide application

are usually made based on perceived risk at a given point in time. However, these decisions

typically take place on scales below the spatial resolution of most models. In practice, adulti-

cide applications may be reactive to positive detection of WNV in mosquitoes, birds, or

humans or a specified metric such as MIR or the vector index. While some of the models used

vector index as an input, none of them included vector index as a predicted output (Table 3),

despite common use of this metric by vector control. Increased temporal and spatial resolution

in model results and a focus on these quantities could make models more applicable to these

decisions. As it stands, most models are parameterized on the county scale or larger, and this

prevents them from being utilized for decisions at local scales. In part, this is driven by the

availability of data—human case data in particular are difficult to obtain at scales finer than the

county because of privacy concerns.

Models may also be limited by accuracy thresholds needed for decisions. Often, while mod-

els may provide more information than a null model, these models may not provide enough

confidence to be used for decision-making. On the other hand, relying on null models for

early warning of upcoming high-risk events is not feasible either. Trade-offs between confi-

dence in imperfect model predictions of extreme events and uninformative priors (e.g., null

models) have to be made. In case of rare events, the uncertainty is usually higher than for more

regular events. Some of this may be related to inadequate data—for rare events, especially large

data sets may be needed for model training. Models may also be limited by heterogeneity in

underlying processes. Models are typically aggregated over multiple trap sites, with the

assumption that similar processes are operating at all trap sites. If traps differ strongly from
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one another in the underlying mosquito or disease dynamics, this heterogeneity may be aver-

aged over during the modeling process and lead the model to produce mean predictions that

are incorrect for all locations. Improved models for identifying regions of homogenous risk

could aid in this aggregation process.

Incorporating the effects of public health interventions such as vector control efforts into

models may be difficult as well. Interventions, even when applied at discrete locations, typically

have effects that extend beyond the place and time of treatment that are not easily quantified.

Also, most interventions do not have suitable controls, as interventions are required to protect

public health. Therefore, finding a control site with no intervention that is equivalent to the

treatment area is difficult (as any sites with equal risk would likely be treated). Before–after

controls are challenging, as mosquito populations can be dynamic. For example, even if popu-

lations do not decrease after an intervention, it is unclear whether the intervention did not

work, or whether the mosquito populations would be much higher in the absence of the

intervention.

Future directions

To improve the quality of modeling for decision-making, a clear mapping between model out-

puts and information needed for decisions would be beneficial. Quantifying the gain of infor-

mation achieved by the model and the value of that information gain would provide clear

guidance for when to apply a model to guide decision-making. Metrics, such as human cases

averted, or resources saved due to an early intervention, could strengthen the justification for

decisions made on the basis of a model. These metrics would need to be carefully described,

however, as it may be difficult to know exact numbers of cases averted, and, therefore, lan-

guage should reflect uncertainty in the results.

Formal quantitative comparisons of existing models may be useful to ensure that all deci-

sion-makers are able to select the best models for their regions and the decisions they need to

make. Multiple models exist at the county-annual scale (Figs 4 and 5), and comparisons could

be performed for 4 of the 6 decisions (Table 5). Formal model comparisons have been per-

formed for dengue [74] and leishmaniasis [75]. A comparison of linear and classification and

regression tree analysis methods has been performed locally for WNV [76]. Models for spatial

risk, models for “good” versus “bad” years, and models that guide local decisions such as appli-

cation of adulticides could all be compared separately. Quantitative comparisons would pro-

vide a degree of rigor and could also contribute to assessing the gain of information associated

with each model. A formal quantitative comparison should consider the lead times associated

with each model in the context of the lead times needed for control efforts [77]. In addition,

the creation of standard data sets for each key output would aid in model comparison. Stan-

dard data sets are used in machine learning (e.g., the Anderson’s Iris data) [78] and provide a

basis for comparing different methods. This will be a challenging task given the complexity

and regional variation of the disease system.

There is a critical need for more social science research, particularly the need to incorporate

human behavior related to vector control and exposure risk in the models. Mosquito transmis-

sion takes place within social-ecological systems [79]. Integrated mosquito management

(IMM) [80] in part aims to influence human behavior and the interaction of humans and mos-

quitoes. Predictive computational models of human behaviors [81] are potentially powerful

tools to support IMM interventions (e.g., source reduction, public education, and community

involvement). This is particularly true if the models can link the individual attributes and

behaviors with the dynamics of the socioenvironmental systems within which individuals/resi-

dents operate [81]. Such considerations as well as making available actionable, customizable
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(e.g., predictive analysis), and easy-to-use model outputs can also encourage mosquito control

practitioners to use such model outputs for local level decision-making [71]. In addition, mod-

els should be culturally responsive to the needs of state, tribal, local, or territorial public health

and mosquito control agencies.

Finally, models need to be based on sound scientific data. A recent study identified over

1,000 mosquito control agencies in the continental US. Of these, 152 agencies had publicly

available open access mosquito data sets, while 148 agencies had live data that can be leveraged

and used with good effect [82]. Indeed, improved integration of IMM interventions such as

public health campaigns, larvicide applications [83,84], and adulticide applications [85,86]

into the models will be critical to assessing the role of interventions in a modeling framework.
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