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Trypanosoma cruzi is a protozoan parasite that causes Chagas disease in humans. Transmission of T cruzi by
triatomine vectors is dependent on diverse environmental and socioeconomic factors. Climate change, which is
disrupting patterns of human habitation and land use, can affect the epidemiology of Chagas disease by influencing
the distribution of vector and host species. We conducted a review using triatomine distribution as a proxy for T cruzi
transmission in North America (Canada, Mexico, and the USA) and central America (Belize, Costa Rica, El Salvador,
Guatemala, Honduras, Nicaragua, and Panama) and investigated the association of T cruzi transmission with climate
change, identifying 12 relevant studies. Most studies (n=9) modelled the effect of the scenario of climate change on the
distribution of relevant vector species and found that global warming could sometimes favour and sometimes hinder
triatomine distribution. There is a need for more research in parasite biology and social sciences to further understand
how climate change and socioeconomic factors can affect the epidemiology of this neglected tropical disease.
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Introduction
Chagas disease, caused by the protozoan parasiteTrypanosoma
cruzi, is one of the neglected tropical diseases (NTDs) of
greatest public health importance in the Americas. The vast
majority of the estimated 6–7million people livingwithT cruzi
worldwide are in the Americas,1 where Chagas disease
disproportionately affects internal and transnational migrants,
Indigenous communities, and disadvantaged people in rural
areas. An additional 70 million people in the Americas are at
risk of transmission. The parasite is primarily transmitted by
triatomine insect vectors but can also be transmitted during
pregnancy or birth, through the consumption of food con-
taminated by triatomines, and through transfusion of blood
products and organ transplantations. Given the ability of some
species of triatomines to colonise dwellings, the threat of
Chagas disease is emerging in urban environments in tropical
and subtropical cities.2 The control ofChagas disease andother
NTDs is linked with the UNSustainable Development Goals,3

and WHO calls for eliminating the disease as a public health
challenge by 2030.4

Climate changeposes several key challenges in the control
of Chagas disease and otherNTDs.3,5,6 The potential effect of
climate change on parasite biology, distribution of vector
and host species, and human migration and interactions
with the environment are not well understood,5,7 and new
geographical areas and populations could be placed at risk.7

Past events such as rising sea levels are thought to have
played a role in the diversification of North American
triatomine species.8 Furthermore, as a disease linked with
social and environmental factors, Chagas disease has been
sensitive to human-induced changes in the environment
throughout history. For example, agricultural expansion
under the Incas and other precolonial polities, as well
as Spanish colonial rule, has been implicated in the
domestication and spread of triatomines to new habitats in
www.thelancet.com/microbe Vol 5 October 2024
South and central America.9 Although vector control
initiatives launched in the 1990s have substantially reduced
incident infections in the Americas (from approximately
700 000 per year in 1990 to under 30 000 per year by 2015),1

the emergence of new domiciliary vectors, insecticide
resistance, and declining expenditure on vector control
programmes, coupled with new socioepidemiological
scenarios, such as oral transmission in the Amazon and
urban encroachment, pose a threat to the achievements of
vector control initiatives within the context of climate
change.3,10 The aim of this review is to explore the effect of
climate change on T cruzi transmission beyond South
America with a focus on North America and central
America. This paper is part of a Series on Chagas disease.
We have used vector distribution as a proxy for T cruzi
transmission risk because vector transmission remains the
main source of new cases.

Social and environmental factors
Against the backdrop of climate change,T cruzi transmission
has gained increasing complexity as traditional rural
landscapes are affected by deforestation and agricultural
expansion and there is rapid and often disorganised
urbanisation.11 Accelerated rural-to-urban migration
within endemic countries and transnational migration to
non-endemic settings have been partly driven by climate
change.5 Because of the relationship of T cruzi trans-
mission with housing materials and socioeconomic
conditions, people living with T cruzi in rural areas could
also be highly vulnerable to the effects of climate change
on farming, ranching, and related livelihoods. Studies
suggest that transnational migrants are also a high-risk
population for T cruzi12 and that non-endemic urban
areas are often not well prepared to manage Chagas
disease, including the possibility of vertical transmission.
1
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Figure 1: Flowchart of the review process for Trypanosoma cruzi transmission.
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Moreover, rapid urbanisation and loss of surrounding
natural habitats, such as dry tropical forests, could favour
the expansion of transmission cycles into urban areas. In
fact, triatomines have been reported in several North
American cities, includingMérida (Mexico) andHouston
(TX, USA).13,14 Since urbanisation can drive evolutionary
changes in triatomines that facilitate their adaptation, the
effect of urbanisation on T cruzi transmission needs to be
further investigated.15

Meanwhile, global warming, specifically increasing tem-
peratures, could promote the expansion of the range of
some triatomine species from tropical to temperate zones,
with the abundance of domestic animals and other host
species playing an important role.16 Local epidemiological
dynamics are shaped by sociocultural landscape config-
urations in which human habitation and land use (for
agriculture, grazing, or harvesting of natural products)
intersect with domestic and zoonotic transmission
cycles.17,18 For example, the vector species Rhodnius pallescens
in Panama, which is closely associated with Attalea butyracea
palms, proved to be more abundant in anthropogenically
disturbed areas, although in a worse physical state, than in
forested areas. Starved triatomines in habitats shaped by
anthropogenic activity are potentially more likely to
enter human dwellings in search of a blood meal.19 How
shifting land-use patterns, in response to deepening
socioeconomic inequalities and environmental pressures
stemming from climate change, affect future scenarios for
T cruzi transmission remains to be examined. In this
sense, there is a need to undertake more integrated mul-
tidisciplinary approaches to gain a deeper understanding
of the patterns and causes of Chagas disease risk in rural
settings, where ecological processes drive transmission
and sociocultural processes drive parasite exposure and
environmental change.20

Chagas disease outside of South America
Much of the current public health literature on Chagas
disease has focused on South America, where four of the
five countries with the highest burden of disease are located
(Argentina, Bolivia, Brazil, and Colombia).1 Nonetheless,
North America, central America, and theCaribbean present
a unique epidemiological context, with a mix of both
endemic andnon-endemic countries, richdiversity of vector
species, distinct T cruzi genetic profile, and highly dynamic
south–northmigrationprocess.CentralAmerica,whichhas
an estimated 385 000 people living with T cruzi,1 has
persistent foci of vector transmission, with some countries
facing serious political and economic challenges. Mexico
has the third highest estimated burden of the
disease (876 000 people living with T cruzi),1 with diverse
ecological contexts. Although the majority of the estimated
300 000 people with T cruzi in the USA21,22 are most
likely migrants from Mexico, central America, and
South America, historical reports in the southern USA
suggest that autochthonous transmission isnot onlypossible
but also has long been overlooked.23 The Caribbean is
currently not considered an endemic region for Chagas
disease,1 but given the area’s close proximity and relation-
ships with endemic Latin American countries and the USA,
the risks that socioenvironmental change could pose in the
future remain unclear. Migration, which is often driven by
the effects of climate change,means that themanagement of
Chagas disease needs to encompass both rural and
(increasingly) urban contexts in endemic and non-endemic
areas.16

Selection of studies
After applying our search strategy, 12 studies16,24–34 met the
inclusion criteria (figure 1; table); 11 were originally
published in English and one in Spanish.33 The majority of
studies were funded by public or academic institutions, or
both in Mexico (n=6)16,29,30,32–34 or other Latin American
countries (n=3),27,28,31 two were funded by US academic
institutions,24,26 and one by a Canadian public agency.25

Nine of the 12 included articles modelled the potential dis-
tribution of triatomine species under climate
change.16,24,26–29,31,33,34 These modelling studies incorporated
bioclimatic data to predict the possible effects of climate
change on the geographical range of select triatomine
species using different approaches, including ecological
niche and species distribution modelling. In seven of
nine cases, these studies strictly focused on triatomines and
climate, without directly addressing the potential for T cruzi
transmission to humans, incorporating epidemiological or
other analyses. However, Carmona-Castro and colleagues29

quantified the increased risk of exposure to humans on the
basis of the expansion of the triatomine range, and de la
Vega andcolleagues27 linkedexperimental data on triatomine
thermotolerance with species distribution modelling.
Two studies presented experimental data assessing the
effect of rising temperatures on T cruzi-infected tri-
atomines.30,32 Only two studies incorporated methodolo-
gies to assess the social, political, or health system
www.thelancet.com/microbe Vol 5 October 2024

mailto:Norman.Beatty@medicine.ufl.edu
www.thelancet.com/microbe


Caribbean Central
America

North America Type of study Main finding

Mexico USA Canada

Click Lambert et al (2008)24 ⋅⋅ ⋅⋅ ⋅⋅ U ⋅⋅ Species distribution
modelling

Geographical information system and minimum temperature thresholds were
delineated for US triatomines and predicted under future climate change scenarios,
revealing a northward expansion of the at-risk zone(s); physician surveys in the
predicted risk zones showed little awareness of Chagas disease.

Cox et al (2013)25 ⋅⋅ ⋅⋅ ⋅⋅ ⋅⋅ U Multi-criteria decision
analysis

Expert opinions and 40 criteria were analysed to prioritise emerging diseases ofmost
concern in Canada in the context of climate change; Chagas disease was identified as
one of the top three.

Garza et al (2014)26 ⋅⋅ ⋅⋅ U U ⋅⋅ Species distribution
modelling

Models forecast potential range shift of Triatoma gerstaeckeri and Triatoma
sanguisuga as a result of climate change.

de la Vega et al (2015)27 ⋅⋅ U ⋅⋅ ⋅⋅ ⋅⋅ Species distribution
modelling

Minimum temperature of the coldest month and other physiological factors explain
the geographical distribution of Rhodnius prolixus.

de la Vega and Schilman
(2017)28

⋅⋅ U U U ⋅⋅ Species distribution
modelling

Studied species showed high tolerance to desiccation, which could be an important
factor in their distribution under climate change scenarios.

Carmona-Castro et al (2018)29 ⋅⋅ U U U ⋅⋅ Modelling Effect of climate change is specific to each species, with those having the greatest
current distribution expected to have the largest shifts; increased risk of vector
exposure for human populations in North America by 1⋅48% (urban) and 1⋅75%
(rural).

González-Rete et al (2019)30 ⋅⋅ ⋅⋅ U ⋅⋅ ⋅⋅ Ecological Climate change could decrease the survival rates of T cruzi-infected Triatoma
pallidipennis.

Altamiranda-Saavedra et al
(2020)31

⋅⋅ U ⋅⋅ ⋅⋅ ⋅⋅ Species distribution
modelling

Potential distribution of two vector species, Triatoma maculata and Rhodnius
pallescens, in response to different environmental variables.

González-Rete et al (2021)32 ⋅⋅ ⋅⋅ U ⋅⋅ ⋅⋅ Ecological Negative effects on the abundance of T cruzi in T pallidipennis at high temperatures
(increased linearly with time at 20◦C and, to a lesser extent, at 30◦C).

Torres-Delgado et al (2022)33 ⋅⋅ U U ⋅⋅ ⋅⋅ Species distribution
modelling

A decrease in the distribution of Triatoma nitidawas predicted under climate-change
modelling, but new areas would become habitats susceptible to vector invasion.

Flores-López et al (2022)34 ⋅⋅ ⋅⋅ U ⋅⋅ ⋅⋅ Ecological niche
modelling

Models predicted a northward shift in the ecological niche of Dipetalogaster maxima
in Baja California under climate change.

González-Salazar et al
(2022)16

⋅⋅ ⋅⋅ U ⋅⋅ ⋅⋅ Modelling Modelling of T cruzi transmission under human land use and climate change
scenarios predicts that transmission risks would increase under current or worsening
environmental scenarios but improve with the implementation of more
environmentally sustainable land-use practices.

Table: Studies on Trypanosoma cruzi transmission and climate change included in this review

Search strategy and selection criteria

To collate current knowledge on the association between climate change and Trypanosoma cruzi transmission, we searched for articles published on PubMed andWeb
of Science between database inception and May 14, 2024, with no restrictions for language. We used the search terms “triatomines”, “Trypanosoma cruzi”, “Chagas
disease”, “globalwarming”, “climate change”, “cambio climatico”, and “calentamiento global”, aswell as geographical terms forNorthAmerica—Canada,Mexico, and the
USA (excluding Puerto Rico)—and central America—Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, and Panama. The Caribbean region—Cuba,
Dominican Republic, Haiti, Puerto Rico, and Jamaica—was included in the search strategy; however, no relevant studies were found.We also checked the references of
the selected articles for additional records, but no relevant studies were added; therefore, we excluded the Caribbean region from the review. This process led to the
identification of 12 studies on T cruzi transmission in the context of climate change in North and central America.

Series
dimensions. Cox and colleagues25 used a multi-criterion
decision analysis approach to understand emerging dis-
eases that were of most importance to stakeholders in
Canada, and Click Lambert and colleagues24 incorporated
an awareness survey of physicians. We did not find
studies that explicitly addressed the effect of climate
change on vertical or oral transmission of T cruzi.
The included studies are described in more detail
throughout the review according to geographical regions.

Central America
Central America is one of the global regions that is most
affected by and vulnerable to climate change but is less
prepared to manage the effects of climate change
www.thelancet.com/microbe Vol 5 October 2024
compared with high-income regions.35 Drought, rising sea
level, coral bleaching, increasing frequency of severe
weather events, seasonal irregularity, and variable rainfall
are exacerbating the region’s many environmental, socio-
economic, and political challenges.35 Climate change is,
thus, a profound threat to the region’s progress in the
control of vector-borne diseases. Chagas disease remains
the most important parasitic infection in central America
in terms of prevalence and disability-adjusted life-years,
predominantly affecting individuals with low income
living in rural areas.10

Figure 2 shows the current distribution of triatomine
species in central America. Among the triatomine
species noted in central America, three vector species
3
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(Rhodnius prolixus, Triatoma dimidiata, and R pallescens)
have historically been responsible for most T cruzi infec-
tions in the region. A colony collection of R prolixus,
originating from Venezuela and given to El Salvador in
1912 by a European university, accidently escaped from the
laboratory in 1913. R prolixus became the most important
vector in the region for close to a century in part due to an
almost exclusive affinity to domestic and peridomestic
habitats.36 de la Vega and colleagues27 assessed the
relationship of thermotolerance and other physiological
factors with the geographical distribution of R prolixus,
in comparison to that of the South American species
Triatoma infestans, using species distribution modelling
with incorporation of select bioclimatic variables. In
addition to geographical modelling, de la Vega and
colleagues27 gathered experimental data incorporating lethal
temperature, critical thermal minimum (CTmin), and
chill-coma recovery time for fifth-instar nymphs of both
species. The minimum temperature of the coldest month
was identified to be themain factor limiting the distribution
of both species, although R prolixus showed lower tolerance
for cold. de la Vega and colleagues27 also noted that
extending thesefindings to account for the effects of climate
changewould require assessing temperature ranges in both
domestic and sylvatic microhabitats, including the prob-
abilities of reaching minimum and maximum values of
temperature. Furthermore, the lower tolerance ofR prolixus
towards thermal variation (ie, a narrow range for its CTmin

and critical thermal maximum [CTmax]) might have also
played a role in the restricted geographical distribution of
Rprolixus to lower latitudes of central America andnorthern
South America in comparison to that of other triatomines
such as T infestans.27 These vector characteristics made
elimination of R prolixus an attainable target. The Initiative
of the Central American Countries for Control of Chagas
Disease, launched in 1997, was crucial in interrupting
transfusion-related transmission and eliminatingR prolixus
by successfully implementing vector control measures
based on indoor residual spraying. Central America was
certified free of T cruzi transmission by R prolixus in
August, 2011, and the estimated disease incidence
decreased from 62 000 new cases per year in the 1990s to
8500 new cases in 2006.36

The two remaining important species, R pallescens and
T dimidiata, present a more diverse range of ecosystem
preferences.Tdimidiata, themost important vector in central
America, has a wide geographical range, extending from
Mexico to Peru, in both domestic and sylvatic habitats.37

T dimidiata is considered a species complex with important
differences in morphology,38 genetics,39 physiology,40 and
host preferences,41 which could be associated with the
variation in their vectorial capacity.42 These variations affect
the frequency and intensity of the vector-human interface
and hence the risk of T cruzi transmission.8 T dimidiata is,
thus, a versatile vector for which conventional vector control
measures such as prevalence estimates by targeted cross-
sectional surveys followed by a suitable action or indoor
residual spraying are of transient or inadequate effective-
ness.18,43 Furthermore, the vector carries two discrete typing
units in the region—TcI and TcIV. TcI shows marked
diversity supporting the detection of high vectorial mobility
and an absence of association among host, vector, and
ecotopes in the central American isthmus.44 However,
T dimidiata presented a lower tolerance for arid conditions
than T infestans and other South American species.28

R pallescens is the most important vector species in
Panama. The ecological niche of R pallescens is closely rela-
ted to palm trees (A butyracea) that proliferate in previously
forested ecosystems modified for cropland and livestock
production.45 Increasing anthropogenic activities in the
region could, therefore, shift the vector’s ecology to a
synanthropic behaviour, expanding the distributional
latitudes of the vector.3,31 Furthermore,modelling suggested
www.thelancet.com/microbe Vol 5 October 2024
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Figure 3: Principal triatomine species capable of transmitting Trypanosoma cruzi in Mexico
Current distribution of major triatomine vectors of T cruzi in Mexico (A and B). For more details on methods and sources, see appendix p 2.
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environmental suitability for extension of the species to
parts of Costa Rica, Nicaragua, Belize, and Yucatán.31

Torres-Delgado and colleagues33 modelled the effects of
climate change on the distribution of Triatoma nitida using
the Beijing Climate Center Climate System Model.
Although not currently a main vector in the region, T nitida
is a highly adaptable sylvatic species that has previously been
reported to invade homes in Guatemala.46 Torres-Delgado
and colleagues found a trend towards decreasing distribu-
tion and alsonoted that new areas could become susceptible
to habitation by T nitida. The effect of present-day demo-
graphic changes in central America, including unplanned
urbanisation, population growth, land-use change, and
biodiversity loss, in tandem with socioeconomic factors
such as improved housing conditions, forced migration,
and animal and plant trade, on the dynamics of Chagas
disease needs to be better understood.3

North America
Mexico
The study of the effect of climate change on the risk of
Chagas disease in Mexico has primarily focused on
www.thelancet.com/microbe Vol 5 October 2024
vector–parasite interactions or the geographical responses
of vectors. Important vector species of Mexico are shown in
figure3.Vector–parasite interactionshavebeen investigated
by experimental studies and the geographical responses of
vectors by correlational ecological niche modelling.
Two studies with experimental approaches have been

conducted on the Mexican Triatoma pallidipennis species to
investigate the effect of increasing temperatures on both the
immune function of T pallidipennis against T cruzi30 and
the abundance of T cruzi parasites during infection in the
vector.32 In both studies, as temperatures increased, vectors
showed a decrease in their immune system capacity against
T cruzi infection and therefore had reduced survival.
Furthermore, the number of parasites in the midgut of
insects increased at intermediate temperatures (30◦C) but
decreased at 34◦C, which was the limit of the temperature
range tested. Therefore, based on the experimental results,
there is an anticipated reduction in vector capacity due to
climate change.30 On the other hand, we identified two
studies that used correlational approaches to infer how the
geographical distribution of Mexican triatomines would be
affected in different climate change scenarios29,34 and one
5
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study that additionally included an analysis of the
compound effect of human-modified landscapes.16

Carmona-Castro and colleagues29 analysed the influence of
climate change, represented by different Representative
Concentration Pathways 4⋅5 and 8⋅5, on the potential
distribution of 20 vector species and the T cruzi-vector
relationship for 2050 and 2070. Two different ecological
niche modelling algorithms were used to mitigate software
bias, which concluded that climate change will have
idiosyncratic effects on species, with Triatoma recurva and
Triatoma sanguisuga showing higher increments in
habitat suitability area, representative of Nearctic species
with currently larger geographical ranges. Although
Triatoma protracta has one of the largest territorial dis-
tributions, the potential geographical range and mean
elevation are expected to slightly decrease. T sanguisuga’s
potential distribution could extendnorthward or southward.26

In contrast, neotropical species with smaller ranges will
experience reductions or no substantial changes between
current and future potential distributions. Triatoma barberi,
Triatoma longipennis, and Triatoma mexicana are expected to
have high reductions in their habitat suitable area. Carmona-
Castro and colleagues29 also analysed human exposure to
vectors under climate change scenarios and concluded that
the highest increment in human exposure to any vector in
Mexico will be for T recurva and T protracta.
Using the same approach, Flores-López and colleagues34

investigated how Dipetalogaster maxima, the largest
triatomine of the Americas with one of the smallest ranges—
located at the tip of the south Baja California peninsula
in La Paz, Mexico—will respond to climate change.
Flores-López and colleagues34 assessed whether vector and
T cruzi niches will be coupled under these scenarios and
concluded that both the vector and parasite will have over-
lapping suitable areas when they are moving northwards.
Flores-López and colleagues,34 who also assessed human
exposure to distributional shifts, suggested that the popular
tourist destination of Los Cabos, Mexico is potentially in a
high-risk zone for the circulation of T cruzi.
Using a correlative ecological niche modelling approach

that employs a Bayesian datamining framework, González-
Salazar and colleagues16 predicted T cruzi transmission
cycles under future land-use and land-cover change (LUCC)
in climate change scenarios for 2050 and 2070 in Mexico.16

In addition to modelling 21 vector species, the study inclu-
ded mammals hosting the parasite as part of the vector
niches (biotic factors). By correlating T cruzi transmission
cycle presence (ie, vector or host presence, or both) with
LUCC, González-Salazar and colleagues16 characterised
environmental conditions (ie, eco-epidemiological land-
scapes) that might favour pathogen transmission, and
among their main results, they anticipated a growing
pattern of domiciliation processes in T cruzi transmission,
mainly governed by LUCC towards urbanisation and forest
degradation (ie, human-modified landscapes). Accordingly,
Chagas disease could become an emerging health problem
in urban areas.
USA
In the USA, triatomines are endemic and have existed for
thousands of years,47 with the currently recognised distri-
bution including the 28 southernmost states (figure 4).
Furthermore, human transmission of T cruzi has a long
history in the southernUSA,with theparasiteDNAdetected
in a 1150-year-old mummy in south Texas,48 and T cruzi is
detected in wildlife reservoirs and domestic dogs in most
regions where triatomines are found. Despite the wide
spread presence of vectors and the parasite in the
environment, autochthonous human infections in the
southernUSA are rare, with only 76 cases reported between
2000 and 2018.49 Although these case reports reflect only a
subset of true local infections, which could affect up to
10 000 people,21 aspects of vector biology (including poten-
tially prolonged post-feeding defecation intervals and soci-
oeconomic conditions) appear to keep triatomines
predominantly in outdoor or sylvatic habitats where
humans are at less risk of infection (but where dogs and
wildlife could readily be infected).50 For example, a large
triatomine community science programme across the
southern USA revealed that only 607 (26%) of 2334
triatomines encountered by humans and submitted to the
programme from 18 states were found indoors.51 However,
domestic infestations by triatomines have long occurred in
the southern USA, with increasing awareness of transmis-
sion risk and the problem of human bites by the vector
leading to anaphylaxis.52

Despite the history of triatomines and T cruzi in southern
USA, new reports of triatomine encounters or cases of
humanor animalChagasdisease are often casually linked to
climate change or even human migration. For example, a
compilation of triatomine reports from the mid-country
states of Illinois and Missouri53—both of which are states
where triatomines are a part of the natural environment—
led to news coverage with titles such as “Problematic bug
makes its way to Springfield [Illinois]; Globalwarming leads
kissing bug to migrate from Latin America”.54 In terms of
bringing attention to neglected vectors or diseases, such
news attention is welcome, but the links to climate change
reported therein might be inaccurate or premature. To
understand whether with climate change, expanded vector
distributions or increased human or animal burden of the
associated Chagas disease will be observed now or in the
future, there is a need for historic and current baseline data
based on which change can be measured; however, such
data are lacking. The need for such data is especially true
along what is currently recognised as the northern distri-
butional limits of triatomines, where population densities
are low and there is inadequate awareness (eg, Wyoming
and Delaware),55,56 and thus, vector encounters might be
interpreted as resulting from a newly arrived vector.
There are 11 species of triatomines known to occur in the

USA (locally known as kissing bugs), with a subset of spe-
cies regularly encounteredbyhumans,whichare implicated
in human bites or the transmission of T cruzi to humans
or animals. These key species in southern USA include
www.thelancet.com/microbe Vol 5 October 2024
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Figure 4: Principal triatomine species capable of transmitting Trypanosoma cruzi in the USA
Current distribution of major triatomine vectors of T cruzi in the USA. For more details on methods and sources, see appendix p 2.
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Triatoma gerstaeckeri, T sanguisuga, Triatoma rubida,
Triatoma indictiva, Triatoma lecticularia, and T protracta;
quantitatively, these six species are themost encountered by
humans, as indexed by a community science programme
(figure 2).51 Infection prevalence varies by species, with one
multispecies study of adult triatomines showing 61⋅6%
infection by T gerstaeckeri, 21⋅7% by T sanguisuga, and less
than 10% by all other tested species.57

Results from our literature search revealed a paucity of
research on climate change, triatomines, and Chagas
disease from the USA, with only four articles meeting the
search inclusion criteria. Click Lambert and colleagues24

used a geographical information system and minimum
temperature thresholds to delineate occurrence zones for
three species known to transmit T cruzi and showed a
predicted northward expansion of the at-risk zone under
future climate change scenarios. Furthermore, Click
Lambert and colleagues24 used physician surveys in the
predicted risk zones to conclude that there is little awareness
of Chagas disease. Finally, Garza and colleagues26 used
maximum entropy models to predict a northern shift of
T gerstaeckeri and southern shift of T sanguisuga from their
current ranges due to climate change.
www.thelancet.com/microbe Vol 5 October 2024
Canada
Our search strategy only yielded one study related toChagas
disease in Canada. Cox and colleagues25 solicited expert
opinions and analysed 40 criteria to prioritise emerging
infectious diseases ofmost concern inCanada in the context
of climate change and identified Chagas disease as one of
the top three diseases. To date, there have been no reported
cases of autochthonous Chagas disease in Canada, which is
well north of the range of vector species. Garza and
colleagues26 modelled scenarios where T sanguisuga, which
has already been found as far north as Illinois and
Wyoming, could move northwards, although Garza and
colleagues do not explicitly mention Canada.

Discussion
Despite the relevance of climate change and the need to
control NTDs to achieve the UN Sustainable Development
Goals,3 research examining the effect of climate change on
T cruzi transmission beyond South America is only
beginning to emerge.We identified12 studies that explicitly
focused on the effect of climate change on T cruzi
transmission;most of the studiesmodelled future trends in
the distribution of vector species. Although climate change
7
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could enable expansion of some vector species northward,
few studies focused on the USA and Canada and only
slightly more on Mexico and central America. The current
literature suggests that the relationship between climate
change and T cruzi transmission is not straightforward.
Triatomine populations might decline in some scenarios
but might expand into new areas in other cases.
Anthropogenic effects, such as deforestation, not only con-
tribute to climate change but also affect habitats available to
triatomine populations. Key questions remain about how
triatomines will adapt to such changes.
Nine of the 12 studies included in this current review

modelled the potential effects of climate change on select
triatomine species, most using species distribution model-
lingwith the incorporation of key bioclimatic variables. One
major challenge for these types of studies is being able to
account for the diversity of factors that affect both triatomine
distribution and any implications for epidemiological
scenarios of T cruzi transmission risk. Although most
models account for trends in temperature and precipitation,
there are inherent uncertainties, and other factors such as
shifts in populations of reservoir species, changing patterns
of human migration or land use, and changes in the health
system (such as improved prevention or treatment ofT cruzi
infection) are often not incorporated in the modelling
exercises.26 Even with these limitations, these studies
suggest heterogeneous effects of climate change,with some
species occupying new niches or expanding range and
others declining.
Only one of the modelling studies also attempted to

quantify the increased risk of human exposure by consid-
ering both rural and urban populations.29 Alternatively,
de la Vega and colleagues27 combined geospatial modelling
with experimental data on thermotolerance, urging future
researchers to expand on the approach by incorporating
estimates of the force of transmission. Another crucial
approach for future research would be to triangulate or
corroborate predictions from geospatial models with
longitudinal data from field observations, particularly in
areas considered at high risk for increased triatomine
presence under climate change. Citizen science approaches
could be incorporated into the effort.58 Additionally, social
science research and qualitative methods could provide key
insights on how climate change, anthropogenic activities,
and the risk of T cruzi transmission interrelate with each
other. Epidemiological analyses can also incorporate a
climate-relevant perspective, for example, by investigating
the association between predicted changes in vector habitat
and incidence of transmission over time.
Extended periods of higher temperatures can contribute

to an elevated risk of exposure to triatomines. Furthermore,
extended warm seasons can create an opportunity for
sylvatic species of triatomines to transition into more
domestic settings. As the climate becomesmore favourable
for the vectors, there is concern that the vectors could adapt
and thrive in areas that had previously been less conducive
to their survival.59 This shift could bring triatomines closer
to human habitation, including urban areas, thereby
increasing the risk of Chagas disease transmission. Most
physiological traits in ectothermic arthropods respond to
temperature non-linearly, from zero at a CTmin increasing
exponentially to a thermal optimumbefore returning to zero
at a CTmax. The effect of climate change on the thermotol-
erance range of vector-borne diseases is, therefore, non-
linear.60 Thus, temperature affects not only the geographical
range of arthropods but also many transmission-related
cycle traits such as oviposition and developmental rate,
adult life span, population density, biting rate, and the
pathogen’s development in the vector (ie, extrinsic incubation
period).60

Temperature is, however, just one of the many inter-
related environmental factors that influence the complex
transmission cycles of vector-borne infections in nature.
Within this ecological niche, humidity, precipitation, and
host aspects such as reservoir availability and susceptibility,
population numbers, andmovement play a less understood
role. Furthermore, additional research is needed to under-
stand how the effects of climate change-linked events, such
as severe storms or droughts, affect T cruzi transmission
dynamics outside of SouthAmerica. For example, one study
recorded a marked increase in T dimidiata abundance in
Yucatán (Mexico) in thewakeofHurricane Isidore in 2002.61

The government and public health response to climate
change and vector-borne diseases, particularly Chagas
disease, involves a multifaceted approach that should be
aimed at addressing the complex interplay among envir-
onmental shifts, disease transmission, and human behav-
iour. As climate change influences the geographical
distribution and exposure risks of triatomines, govern-
ments will need to implement adaptive strategies such as
increasing surveillance systems to monitor vector pop-
ulations and subsequent disease prevalence in changing
environments. Predictivemodelling has shown that Chagas
disease is one of the top three diseases of concern inCanada
because of increased temperatures and precipitation from
climate change.25 Public health campaigns should empha-
sise community education and empowerment on vector
control measures, focusing on at-risk regions but also
including intersectoral cooperation and integrated pesticide
management as part of the sustainability plan.62 As research
initiatives explore the ecological effect of climate change on
vector habitats, this information will need to be shared with
public health policymakers and professionals, aiding in the
development of targeted interventions, including monitor-
ing vector distribution patterns, implementing preventive
measures, and raising awareness among communities at
risk. InMexico and the USA, there is inadequate awareness
of this emerging disease, requiring changes in health
systems to respond effectively to the disease.63 Priorities to
manage this public health challenge include control
programmes to prevent new cases through vertical trans-
mission, blood transfusion, or organ transplant and health
system interventions to increase clinician awareness of
Chagas disease.
www.thelancet.com/microbe Vol 5 October 2024
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The efficacy and long-term viability of vector control
measures are intricately tied to the acceptance and adapta-
tion of the community members in the face of the effects of
climate change. Active participation of communities in the
planning phase, involving collaborative decisionmaking on
logistics and coordination, is pivotal for the development of
vector control programmes that are not only responsive to
community needs but also resilient to climate-related chal-
lenges.64,65 Reduction in exposures and risks could be
improved by fostering a more sustainable and community-
driven approach to mitigate the effects of Chagas disease.
This approach might involve educating communities with
less knowledge or awareness of triatomines and using a
more participatory action researchmethodology to increase
engagement in the implementation and evaluation of a
control strategy. Citizen science approaches to understand-
ing vector transmission in different contexts provide a
promising path forward.57,58 An ecohealth model to reduce
exposure risks considers the social and cultural aspects of the
affected communities, recognising that local practices,
housing structures, and socioeconomic factors affect
vulnerability to Chagas disease.9 This model will
require involving local stakeholders in the planning and
implementation of effective interventions.
Triatomine-integrated vector management programmes

focus heavily on reducing the vector burden within
communities and follow a structured approach relying on
five key concepts: (1) advocacy, legislation, and social
mobilisation; (2) collaborative efforts betweenhealth sectors
and other stakeholders; (3) an integrated approach such as
multifaceted pest management programmes; (4) evidence-
based decisions on policies within the programme; and
(5) capacity-buildingmechanisms designed in the structure
of the programme.62,66 Policy making environments for
triatomine-integrated vector management programmes
should involve local and national governments; health,
agricultural, and environmental sectors; and international
bodies such as those foundwithin the PanAmericanHealth
Organization and WHO. Ecohealth initiatives for the
triatomine vector T dimidiata have been implemented
successfully.67 Another ecohealth approach implemented
in two rural villages in Yucatán, Mexico led to a calculated
reduction in the incidence of Chagas disease by 32%.68

Within the USA, an integrated pest management
approach to tackle triatomine invasion into homes has been
developed in Florida, but further studies are under way to
evaluate these strategies.66,69 Overall, with anthropogenic
and climatic changes being observed in North America,
local and vector-specific integrated vector management
programmes will need to be developed. Triatomine control
methods that already exist or are under development include
biological control mechanisms, environmental insecticide,
genetic control via engineered symbionts that are delivered
to triatomines to make them resistant to T cruzi infection,
deployment ofmass trappingdevices, xenointoxication from
host-targeted interventions, and environmentalmodifications
and ecohealth-driven management strategies.70
www.thelancet.com/microbe Vol 5 October 2024
Climate change is a complex occurrence with profound
implications for a disease that is intimately linked with
human socioeconomic conditions and interactions with the
environment.9 Anthropogenic factors such as land-use
change, housing conditions, vector control measures, and
migration can affect the geographical range andmagnitude
of vector-borne diseases such as Chagas disease. More
research is needed to better understand how climate
change will shape the epidemiology of Chagas disease in
North America’s diverse ecological and socioeconomic
contexts. Future studies should examine the effect of a
warming planet on the parasite’s dual host cycling adapta-
tion, population density, and diversity, as well as parasite
prevalence and virulence,71 phenotypic traits, microbiome,
gene expression, immunity, and vector competence.72

Moreover, social science research can strengthen the
understanding of how phenomena such as migration and
agroindustrial expansion, as well as changing human rela-
tionships with the environment, will affect future domestic
and zoonotic transmission cycles.
Although we did not identify studies that explicitly focus

on vertical or food-borne transmission of T cruzi, the
implications of climate change on these routes certainly
deserve further attention. Food-borne transmission of
T cruzi, better known as oral Chagas disease, carries pro-
found implications for human health and potential mani-
festations of climate change. Little is known about the direct
route of oral ingestion, but several mechanisms exist,
including ingestion of contaminated foods or beverages
with the parasite, consumption of undercooked infected
wildlife, and even possible transmission from an infected
opossum through anal gland secretions. More research is
needed to address concerns for oral transmission in
NorthAmerica and recognitionof this route of transmission
with migration and climatic changes.
This study had limitations. We searched only two data-

bases, and although we strived to be as exhaustive as
possible, some studies could have been missed, especially
from the grey literature. We did not include studies from
SouthAmerica, yet reviewing the SouthAmerican literature
could have important relevance for North America as both
T cruzi strains and triatomine species (eg,T dimidiata) often
extend to both the continents. de Souza and colleagues3

provided an expert review on the effects of climate change
on Chagas disease, covering literature published in South
and central America. We also did not review studies that
examined the effects of climate change on important animal
host species, which would have been difficult to implement
given the wide host range of reservoir species and inde-
pendence of most of these studies to Chagas disease.41,73

Moreover, many studies that do not specifically consider
climate change could, nevertheless, provide important
baseline data that facilitate themeasurement of future shifts
in disease epidemiology and the distribution of host and
vector species.
Inconclusion, theeffects of climate changewill createnew

challenges for the communities affected by NTDs and thus
9
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should be understood within the complex socioeconomic
and environmental factors that shape the epidemiology of
diseases such as Chagas disease. In North America, rapid
urbanisation, deforestation, andmigration (often fuelled by
the effects of climate change) are crucial factors that need to
be considered when planning a public health response.
Collaboration among North and South American countries
and the involvement of the affected communities in devel-
oping solutions will help to ensure the sustainability of
programmes to contain the burden of one of the continent’s
most neglected diseases.
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